Electronic Supplementary Information (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2015

Ag-ZnO heterostructure nanoparticles for highly-efficient catalytic degradation of conge red under visible light

Xu Liu, 1 Weibo Li, 1 Xinxin Xing, 1 Chengjun Dong, 1, 2 Yude Wang 1, 2

1 School of Physical Science and Technology, Yunnan University, 650091 Kunming, People’s Republic of China.

2 Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People’s Republic of China.

* Corresponding Author, Fax: +86-871-65153832; Tel: +86-871-65031124; E-mail: ydwang@ynu.edu.cn (Y.D. Wang)
Figure S1

XRD pattern of as-prepared 4% Ag-ZnO heterostructure nanoparticles.
Figure S2

Four photocatalytic degradation cycles of 25 mg/L CR solution using 3% Ag-ZnO heterostructure nanoparticles under visible irradiation.
Figure S3

(a) Degradation rates for 15 mg/L CR solution at different time intervals for as-prepared samples; UV-vis absorption spectra of CR solutions (25 mg/L) before and after photodegradation treatment with as-prepared (b) ZnO nanoparticles, (c) 2%Ag-ZnO nanoparticles, (d) 3%Ag-ZnO nanoparticles, (e) 4%Ag-ZnO nanoparticles, (f) 5%Ag-ZnO nanoparticles; insets are the photographs of CR solutions before and after photodegradation treatment with corresponding samples at different time intervals respectively.
Figure S4

(a) Degradation rates for 50 mg/L CR solution at different time intervals for as-prepared samples; UV-vis absorption spectra of CR solutions (25 mg/L) before and after photodegradation treatment with as-prepared (b) ZnO nanoparticles, (c) 2% Ag-ZnO nanoparticles, (d) 3% Ag-ZnO nanoparticles, (e) 4% Ag-ZnO nanoparticles, (f) 5% Ag-ZnO nanoparticles; insets are the photographs of CR solutions before and after photodegradation treatment with corresponding samples at different time intervals respectively.
Figure S5

Kinetics of the as-prepared Ag-ZnO heterostructure nanoparticles toward (a) 15 mg/L, (b) 25 mg/L and (c) 50 mg/L Congo red solutions with visible irradiation. And the catalysts used in (a), (b) and (c) are 3% Ag-ZnO, 3% Ag-ZnO and 4% Ag-ZnO heterostructure nanoparticles.