Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation

Shane M. Hickey,[†] Trent D. Ashton,[†] Jonathan M. White,[‡] Jian Li,[§] Roger L. Nation,[§] Heidi Y. Yu[§] Alysha G. Elliott,[#] Mark S. Butler,[#] Johnny X. Huang,[#] Matthew A. Cooper,[#] and Frederick M. Pfeffer^{*,†}

[†]Research Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia,

[‡]Bio21 Institute, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia, [§]Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia and, [#]Institute for Melbourne Discourses. The University of Owenerland, Brickane, Owenerland, 4072, Australia

[#] Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.

fred.pfeffer@deakin.edu.au

CONTENTS

Experimental data for all known compounds	р 3
• ¹ H, ¹³ C and ¹⁹ F NMR spectra for novel compounds	р 7
• Variable Temperature (VT) NMR spectra (Figures S1–5) for 12c	p 93
• Table S1 showing how much mixed ester was formed during alkylation	p 98
• Crystallography data for 12h	p 100
• Table S2 containing a list of all bacterial strains tested	p 101
• References	p 102

All norbornane-based compounds are named using the Von-Baeyer system of nomenclature.¹ All other parts of the structure are named following the IUPAC guidelines. Numbering of norbornane protons follows the general structure shown below. Protons on carbon 7 are labelled either *syn* (*s*) or *anti* (*a*).

2-Methylisothiouronium iodide² (18)

[CAS Reg. No. 14257-47-7]

SMe H₂N NH₂ I ⊖

A mixture of thiourea (10.098 g, 0.133 mol), iodomethane (8.2 mL, 0.133 mol) and MeOH (100 mL) was heated at 65 °C for 90 min. The MeOH was removed *in vacuo* and the resulting yellow solid was transferred to a sintered glass funnel and washed with Et_2O (5 × 50 mL) under vacuum to afford compound **18** (28.261 g, 99%) as an amorphous white powder.

m.p: 115.3–117.6 °C (lit. 117 °C).3

¹H NMR (270 MHz, DMSO-*d*₆) δ 2.56 (3H, s, CH₃), 8.89 (4H, br s, NH₂).

¹³C NMR (67.5 MHz, DMSO-*d*₆) δ 13.3, 171.1.

N,*N*'-Bis(*tert*-butoxycarbonyl)-*S*-methylisothiourea² (19)

[CAS Reg. No. 107819-90-9]

SMe BocHN NBoc

To a stirring solution of 2-methylisothiouronium iodide **18** (9.820 g, 45.03 mmol) in sat. NaHCO₃ (50 mL) and CH₂Cl₂ (105 mL) was added Boc₂O (19.668 g, 90.12 mmol) using CH₂Cl₂ (3×25 mL). After 48 h the reaction mixture was transferred to a separatory funnel and the organic phase was isolated and the aqueous phase was extracted using CH₂Cl₂ (2×50 mL). The combined organic phase was dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude solid was stirred (EtOH/H₂O, 1:9, 100 mL) for 1 h before the mixture was cooled to 0 °C and solid was collected by vacuum filtration, washing with H₂O (EtOH/H₂O, 1:9, 50 mL) gives the title compound (12.257 g, 94%) as a white powder.

m.p: 122.3-123.8 °C (lit. 127 °C).4

¹H NMR (270 MHz, CDCl₃) δ 1.51 (9H, br s, *t*-Bu), 1.53 (9H, br s, *t*-Bu), 2.40 (3H, s, CH₃), 11.61 (1H, br s, NH).

¹³C NMR (100 MHz, CDCl₃) δ 14.6, 28.2, 81.1, 83.4, 150.9, 160.9, 171.6.

HRMS (ESI, m/z) for C₁₂H₂₂N₂O₄S [M + Na]⁺ calc. 313.1193; found 313.1186.

2-[2,3-Bis(*tert*-butoxycarbonyl)guanidino]ethylamine⁵ (14)

H₂N NBoc NHBoc

A solution of *N*,*N'*-Bis(*tert*-butoxycarbonyl)-*S*-methylisothiourea **19** (20.404 g, 70.27 mmol) in CH₂Cl₂ (110 mL) was added in one portion to a stirred solution of 1,2-ethylenediamine (11.7 mL, 176 mmol) in CH₂Cl₂ (150 mL). The reaction was allowed to stir at 21 °C for 90 min. The reaction mixture was then transferred to a separatory funnel and washed with H₂O (2×80 mL), brine (80 mL), then dried (MgSO₄) and filtered. The solvent was removed *in vacuo* at ambient temperature to afford **14** (20.696 g, 97%) as a white powder.

m.p: 96.2-100.1 °C.

¹H NMR (270 MHz, CDCl₃) δ 1.50 (9H, br s, *t*-Bu), 1.51 (9H, br s, *t*-Bu), 2.90 (2H, t, *J* = 6.2 Hz, CH₂), 3.49 (2H, app. q, *J_{app}* = 5.5 Hz, CH₂), 8.67 (1H, br s, NH), 11.51 (1H, br s, NH).

¹³C NMR (67.5 MHz, CDCl₃) δ 28.2, 28.4, 41.1, 43.5, 79.4, 83.2, 153.3, 156.5, 163.7.

HRMS (ESI, m/z) for C₁₃H₂₆N₄O₄ [M + H]⁺ calc. 303.2027; found 303.2032.

Dimethyl bicyclo[2.2.1]hept-5-ene-3-endo-2-exo-dicarboxylate (17)

[CAS Reg. No. 3014-58-2]

Method A^6

To the stirring solution of dimethyl fumarate (65.290 g, 0.453 mol) in THF (200 mL), was added freshly cracked cyclopentadiene (40 mL, 0.476 mol), and the reaction was stirred at ambient temperature for 16 h. The solvent was removed under reduced pressure to give the title compound (95.230 g, 99%) as a clear oil.

Method B^7

A 35 mL microwave vial was charged with dicyclopentadiene (2.0 mL, 15.0 mmol), dimethyl fumarate (2.883 g, 20.0 mmol) and hydroquinone (100 mg, 0.90 mmol), and heated using microwave irradiation to 150 °C for 2 h. The resulting orange oil was purified by flash column chromatography (10% EtOAc in pet. spirits) to give a clear oil (4.137 g, 98%).

 $R_f = 0.32$ (10% EtOAc in pet. spirits).

¹H NMR (400 MHz, CDCl₃) δ 1.45 (1H, dd, J = 8.8, 1.7 Hz, H7s), 1.61 (1H, d, J = 8.8 Hz, H7a), 2.68 (1H, dd, J = 3.1, 1.2 Hz, H2), 3.12 (1H, br s, H4), 3.25 (1H, br s, H1), 3.37 (1H, app. t, J = 5.6 Hz, H3), 3.64 (3H, s, Me), 3.71 (3H, s, Me), 6.06 (1H, dd, J = 5.6, 2.8 Hz, H6), 6.27 (1H, dd, J = 5.6, 3.1 Hz, H5).

¹³C NMR (100 MHz, CDCl₃) δ 45.5, 46.9, 47.2, 47.5, 47.7, 51.7, 51.9, 135.3, 137.7, 174.0, 175.2.

HRMS (ESI, m/z) for C₁₁H₁₄O₄ [M + Na]⁺ calc. 233.0784; found 233.0785.

Dimethyl 5,6-exo-dihydroxybicyclo[2.2.1]heptane-3-endo-2-exo-dicarboxylate (6)

[CAS Reg. No. 1228039-59-5]

Method A⁸

The dimethyl ester **17** (3.054 g, 14.53 mmol) and NMO·H₂O (1.87 g, 16.0 mmol) were dissolved in a solution of H₂O/acetone (1:4, 36 mL) to which OsO₄ (4% in H₂O, 730 μ L, 0.40 mol%) was added. The reaction was stirred for 3 d and was then quenched with sat. NaHSO₃ (30 mL). The suspension was extracted with EtOAc (4 × 25 mL), and the combined organic phase was washed with brine (25 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give the title compound (3.337 g, 94%) as a white solid.

Method B^9

To a stirring solution at 0 °C of dimethyl ester **17** (270 mg, 1.28 mmol), *t*-BuOH (4.7 mL) and H₂O (1.2 mL), a solution of KMnO₄ (405 mg, 2.56 mmol), K₂CO₃ (212 mg, 1.54 mmol) in H₂O (6.0 mL) was added dropwise. The reaction was stirred for a further 25 min before the reaction mix was quenched with sat. NaHSO₃ (25 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (20 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to afford the title compound (181 mg, 58%) as a white solid.

m.p: 89.9-92.3 °C (lit. 81-84 °C).8

¹H NMR (270 MHz, CDCl₃) δ 1.33 (1H, d, J = 11.0 Hz, H7s), 1.78 (1H, dd, J = 11.0, 1.2 Hz, H7a), 2.40 (1H, br s, H1), 2.46 (1H, dd, J = 4.5, 1.2 Hz, H4), 2.63 (1H, d, J = 4.9 Hz, H2), 3.11 (1H, app. t, J = 5.1 Hz, H3), 3.62 (3H, s, Me), 3.64 (3H, s, Me), 3.71–3.77 (1H, m, H6), 3.85 (1H, br s, H5).

¹³C NMR (67.5 MHz, CDCl₃) δ 31.8, 44.8, 46.2, 46.4, 48.2, 52.3, 52.5, 70.2, 73.3, 173.2, 174.2.

HRMS (ESI, m/z) for C₁₁H₁₆O₆ [M + Na]⁺ calc. 267.0839; found 267.0836.

Shane/SMH04-159B-CARBON Single Pulse with Broadband Decoupling

Ο AcO. `OMe AcO **`**OMe 0 20

Shane/SMH05-093D Single Pulse Experiment

Ο

Shane/SMH05-093D-CARBON Single Pulse with Broadband Decoupling

0 MeO、 MeO、 оMe 0 **`**OMe 9a

Norbornane diester dibenzyl ether SMH05-081F-1H

Norbornane diester dibenzyl ether SMH05-081F-13C C13CPD CDCl3 {C:\Data_500\Gail} nmr 13

SMH07-113B SMH07-113B - 1H PROTON CDCl3 {C:\Data_500\Shane} nmr 2

SMH07-113B SMH07-113B - 13C C13CPD CDCl3 {C:\Data_500\Shane} nmr 2

SMH08-041B SMH08-041B - 13C C13CPD CDCl3 {C:\Data_500\Shane} nmr 6

SMH08-041B SMH08-041B-19F

SMH06-145B SMH06-145B - 1H PROTON CDCl3 {C:\Data_500\Shane} nmr 1

SMH06-145B SMH06-145B - 13C C13CPD CDCl3 {C:\Data_500\Shane} nmr 1

SMH08-099C SMH08-099C-19F

SMH06-123B SMH06-123B - 1H PROTON CDCl3 {C:\Data_500\Shane} nmr 1

Norbornane diester di benzyl-3-bromo SMH06-123B - 13C C13CPD CDCl3 {C:\Data_500\Shane} nmr 1

SMH06-115C SMH06-115C - 13C C13CPD CDCl3 {C:\Data_500\Shane} nmr 3

Shane/SMH07-147B Single Pulse Experiment

Shane/SMH07-147B-CARBON Single Pulse with Broadband Decoupling

0

0.

Ο

`OMe

Shane/SMH05-129B-CARBON Single Pulse with Broadband Decoupling

SMH08-031B SMH08-031B - 1H PROTON DMSO {C:\Data_500\Shane} nmr 2

SMH08-031B SMH08-031B-19F

SMH08-053B SMH08-053B - 1H PROTON MeOD {C:\Data_500\Shane} nmr 5

SMH08-053B SMH08-053B-19F

Shane/SMH06-153A-Carbon Single Pulse with Broadband Decoupling

SMH08-145A SMH08-145A-19F

-100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 f1 (ppm)

Shane/SMH06-139B-13C Single Pulse with Broadband Decoupling

SMH06-129D SMH06-129D - 1H PROTON MeOD {C:\Data_500\Shane} nmr 15

Br∘ 0 Br∖ ЮĤ 0 ЮH

SMH06-129D SMH06-129D - 13C C13CPD MeOD {C:\Data_500\Shane} nmr 15

Shane/SMH06-045B Single Pulse Experiment

SMH06-045B SMH06-045B 13C C13CPD CDCl3 {C:\Data_500\Shane} nmr 14

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 f1 (ppm)

Figure S2: Expansion (1.76–1.98 ppm) of VT ¹H NMR (500 MHz) of 12c in DMSO-d₆ (20–110 °C)

Figure S3: Expansion (2.14–2.29 ppm) of VT ¹H NMR (500 MHz) of 12c in DMSO-d₆ (20–110 °C)

Figure S4: Expansion (3.56–3.79 ppm) of VT ¹H NMR (500 MHz) of 12c in DMSO-d₆ (20–110 °C)

Figure S5: Expansion (4.26–4.78 ppm) of VT ¹H NMR (500 MHz) of 12c in DMSO-d₆ (20–110 °C)

Table S1: Ester by-products of bis-alkylation step

a) Yield calculated over two steps.

Figure S6. Thermal ellipsoid plot of one of the two independent molecules of 12h. Ellipsoids are at the 20% probability level.

Crystal data for **12h**. $2(C_{23}H_{22}Br_2O_6)$. (CH₃CH₂OH), M = 1138.52, T = 130.0 K, $\lambda = 1.54180$, 554.22, space group P c, a = 13.3929(1) b = 5.4658(1), c = 33.5433(4) Å, $\beta = 97.438(1)^{\circ}$ V 2434.81(6) Å³, Z = 4, Z' = 2, $D_c = 1.512$ Mg M⁻³ μ (Cu-K α) 4.519 mm⁻¹, F(000) =1112, crystal size 0.54 x 0.49 x 0.38 mm³, 16695 reflections measured, 8602 independent reflections [R(int) = 0.0230], the final R was 0.0431 [I > 2 σ (I)8569 data] and wR(F²) was 0.1162 (all data), Absolute structure parameter 0.15(2).

Organism	Strain	Strain description	Assay
Escherichia coli	ATCC 25922	FDA strain Seattle 1946	MIC
Klebsiella pneumoniae	ATCC 13883	Control strain	DD
Klebsiella pneumoniae	ATCC 700603	Multi-drug resistant	MIC
Acinetobacter baumannii	ATCC 19606	Type strain	MIC/DD
Pseudomonas aeruginosa	ATCC 27853	Type strain	MIC/DD
Staphylococcus aureus	ATCC 43300	MRSA (methicillin resistant <i>S. aureus</i>)	MIC/DD
Enterococcus faecium	ATCC 700221	VRE (vancomycin resistant Enterococcus)	DD
Staphylococcus aureus	Clinical isolate	mMRSA (multi-resistant methicillin resistant S. <i>aureus</i>)	MIC
Staphylococcus aureus	NARSA-NRS 17	GISA (glycopeptide- intermediate <i>S. aureus</i>)	MIC
Staphylococcus aureus	NARSA-NRS 1	VISA (vancomycin- intermediate <i>S. aureus</i>)	MIC
Staphylococcus aureus	Clinical isolate	MRSA	MIC
Staphylococcus aureus	NARSA-VRS 10	Glycopeptide resistant Staphylococci	MIC
Streptococcus pneumoniae	ATCC 700677	Multi-drug resistant	MIC
Enterococcus faecalis	Clinical isolate	VanA (vancomycin resistant)	MIC

Table S2: Bacterial strains used for Minimum Inhibitory Concentration (MIC) and disk diffusion (DD) assay

References

- 1. G. P. Moss, *Pure Appl. Chem.*, 1999, **71**, 513-529.
- 2. G. Radau, S. Schermuly and A. Fritsche, Arch. Pharm., 2003, **336**, 300-309.
- 3. A. Kraus, P. Ghorai, T. Birnkammer, D. Schnell, S. Elz, R. Seifert, S. Dove, G. Bernhardt and A. Buschauer, *ChemMedChem*, 2009, **4**, 232-240.
- 4. C. Liu, W. Guo, X. Shi, M. A. Kaium, X. Gu and Y. Z. Zhu, *Eur. J. Med. Chem*, 2011, **46**, 3996-4009.
- 5. S. M. Hickey, T. D. Ashton, S. K. Khosa and F. M. Pfeffer, *Synlett*, 2012, **23**, 1779-1782.
- 6. M. M. Flook, J. Börner, S. M. Kilyanek, L. C. H. Gerber and R. R. Schrock, *Organometallics*, 2012, **31**, 6231-6243.
- 7. M. Dejmek, H. Hrebabecky, M. Sala, M. Dracinsky and R. Nencka, *Synthesis*, 2011, 4077-4083.
- 8. L. C. Henderson, J. Li, R. L. Nation, T. Velkov and F. M. Pfeffer, *Chem. Commun.*, 2010, **46**, 3197-3199.
- 9. T. J. Donohoe, A. Jahanshahi, M. J. Tucker, F. L. Bhatti, I. A. Roslan, M. Kabeshov and G. Wrigley, *Chem. Commun.*, 2011, **47**, 5849-5851.