Supporting Information

A novel 3D Si/TiO$_2$-Ti$_2$O$_3$ nanorod arrays composite used as anode material for lithium ion batteries

Yuan Zhonga, Chuang Yuea,b,d, Binbin Chenc, Shibo Suna, Mingsen Zhengc, Libo Zhaob, Suntao Wua, Jing Li*a,b,d, Junyong Kanga, Liwei Lind

a Department of Physics/Pen-Tung Sah Micro-Nano Institute of Science and Technology, Xiamen University, Xiamen, Fujian, 361005, China

b State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shanxi, 710049, China

c Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China

d Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States

*Corresponding author E-mail: lijing@xmu.edu.cn (J. L.)
Figure S1. Charge-discharge curves of (a) Si NRs and (b) Si/TiO$_2$-Ti$_2$O$_3$ NRs during the 1st, 2nd, 5th and 10th cycle under a current density of 20 μA cm$^{-2}$ after a galvanostatic discharge activation process for 24 h in the first cycle.
Figure S2. The impedance spectra of Si/TiO$_2$-Ti_2O_3 NRs compared with that in bare Si NRs under amplitude of 5.0 mV and with a frequency scan from 100 k to 0.1 Hz.
Figure S3. (a) SEM image, (b) High magnification SEM image, and (c) XRD pattern of Si/TiO$_2$-Ti$_2$O$_3$ NRs anode after CV measurement for ten discharge/charge cycles (within the voltage range of 0.01 to 2.5 V at the scan rate of 0.1 mV s$^{-1}$).