Modification of photophysics of 3-hydroxyflavone in aqueous solutions of imidazolium-based room temperature ionic liquids: A comparison between micelle-forming and non micelle-forming ionic liquids

Saptarshi Ghosh and Nitin Chattopadhyay*

Department of Chemistry, Jadavpur University, Kolkata - 700 032, India

*Corresponding author: Fax: 91-33-2414 6584
E-mail: nitin.chattopadhyay@yahoo.com

Electronic Supplementary Information

Figure S1. Variation in the emission intensity of the tautomeric species of 3HF in the aqueous solution of [BMIM][C₈SO₄].
Figure S2. Variation in the emission spectra of 3HF with the addition of S₈S. The concentrations of S₈S are provided in the legends. $\lambda_{\text{exc}} = 345$ nm.

Figure S3. Variation in the emission intensity of the tautomeric species of 3HF in the aqueous solutions of S₈S.
Figure S4. Variation in the emission spectra of carbazole with the addition of S₈S at pH ~ 12. The concentrations of S₈S are provided in the legends. $\lambda_{\text{exc}} = 295$ nm.

Figure S5. Variation in the ratio of emission intensities of the neutral form to that of anionic form of carbazole in the aqueous solutions of S₈S (pH ~ 12).
Table S1. Time resolved fluorescence decay parameters of normal species of 3HF ($\lambda_{em}=410$ nm) at different concentrations of [BMIM][BF$_4$]. $\lambda_{exc}=370$ nm.

<table>
<thead>
<tr>
<th>[BMIM][BF$_4$] (mM)</th>
<th>τ_1 (ns)</th>
<th>τ_2 (ns)</th>
<th>τ_3 (ns)</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>τ_{av} (ns)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.17</td>
<td>2.77</td>
<td>0.99</td>
<td>0.01</td>
<td>0.20</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.95</td>
<td>0.17</td>
<td>0.97</td>
<td>4.37</td>
<td>0.96</td>
<td>0.03</td>
<td>0.01</td>
<td>0.23</td>
<td>1.20</td>
</tr>
<tr>
<td>12.29</td>
<td>0.15</td>
<td>1.48</td>
<td>5.63</td>
<td>0.95</td>
<td>0.03</td>
<td>0.01</td>
<td>0.25</td>
<td>1.11</td>
</tr>
<tr>
<td>19.51</td>
<td>0.16</td>
<td>1.47</td>
<td>5.22</td>
<td>0.94</td>
<td>0.03</td>
<td>0.02</td>
<td>0.29</td>
<td>1.14</td>
</tr>
<tr>
<td>28.99</td>
<td>0.19</td>
<td>1.61</td>
<td>5.51</td>
<td>0.94</td>
<td>0.04</td>
<td>0.02</td>
<td>0.35</td>
<td>1.10</td>
</tr>
<tr>
<td>38.27</td>
<td>0.21</td>
<td>2.27</td>
<td>6.74</td>
<td>0.94</td>
<td>0.04</td>
<td>0.02</td>
<td>0.42</td>
<td>1.12</td>
</tr>
<tr>
<td>51.89</td>
<td>0.21</td>
<td>1.86</td>
<td>6.07</td>
<td>0.91</td>
<td>0.06</td>
<td>0.03</td>
<td>0.48</td>
<td>1.13</td>
</tr>
<tr>
<td>65.11</td>
<td>0.18</td>
<td>1.72</td>
<td>6.01</td>
<td>0.90</td>
<td>0.07</td>
<td>0.03</td>
<td>0.47</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Table S2. Time resolved fluorescence decay parameters of normal species of 3HF ($\lambda_{em}=410$ nm) at different concentrations of [BMIM][C$_8$SO$_4$]. $\lambda_{exc}=370$ nm.

<table>
<thead>
<tr>
<th>[BMIM][C$_8$SO$_4$] (mM)</th>
<th>τ_1 (ns)</th>
<th>τ_2 (ns)</th>
<th>τ_3 (ns)</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>τ_{av} (ns)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.17</td>
<td>2.77</td>
<td>0.99</td>
<td>0.01</td>
<td>0.20</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.48</td>
<td>0.15</td>
<td>1.44</td>
<td>5.01</td>
<td>0.95</td>
<td>0.04</td>
<td>0.01</td>
<td>0.25</td>
<td>1.09</td>
</tr>
<tr>
<td>4.95</td>
<td>0.22</td>
<td>1.46</td>
<td>5.17</td>
<td>0.92</td>
<td>0.05</td>
<td>0.03</td>
<td>0.33</td>
<td>1.19</td>
</tr>
<tr>
<td>9.86</td>
<td>0.23</td>
<td>1.57</td>
<td>5.59</td>
<td>0.89</td>
<td>0.08</td>
<td>0.03</td>
<td>0.49</td>
<td>1.20</td>
</tr>
<tr>
<td>17.11</td>
<td>0.26</td>
<td>1.51</td>
<td>5.32</td>
<td>0.82</td>
<td>0.13</td>
<td>0.05</td>
<td>0.69</td>
<td>1.17</td>
</tr>
<tr>
<td>24.27</td>
<td>0.32</td>
<td>1.52</td>
<td>5.72</td>
<td>0.72</td>
<td>0.22</td>
<td>0.06</td>
<td>0.91</td>
<td>1.09</td>
</tr>
<tr>
<td>28.99</td>
<td>0.27</td>
<td>1.84</td>
<td>6.25</td>
<td>0.76</td>
<td>0.15</td>
<td>0.09</td>
<td>1.06</td>
<td>1.15</td>
</tr>
<tr>
<td>33.65</td>
<td>0.33</td>
<td>1.89</td>
<td>6.27</td>
<td>0.69</td>
<td>0.22</td>
<td>0.09</td>
<td>1.21</td>
<td>1.10</td>
</tr>
<tr>
<td>40.57</td>
<td>0.40</td>
<td>2.08</td>
<td>6.91</td>
<td>0.65</td>
<td>0.28</td>
<td>0.07</td>
<td>1.32</td>
<td>1.12</td>
</tr>
<tr>
<td>49.64</td>
<td>0.34</td>
<td>2.04</td>
<td>7.16</td>
<td>0.58</td>
<td>0.34</td>
<td>0.08</td>
<td>1.46</td>
<td>1.10</td>
</tr>
<tr>
<td>58.54</td>
<td>0.40</td>
<td>2.12</td>
<td>7.17</td>
<td>0.57</td>
<td>0.35</td>
<td>0.08</td>
<td>1.54</td>
<td>1.09</td>
</tr>
<tr>
<td>67.28</td>
<td>0.41</td>
<td>2.11</td>
<td>7.18</td>
<td>0.56</td>
<td>0.36</td>
<td>0.08</td>
<td>1.56</td>
<td>1.03</td>
</tr>
</tbody>
</table>
Table S3. Time resolved fluorescence decay parameters of tautomeric species of 3HF \((\lambda_{em}=550\ \text{nm})\) at different concentrations of [BMIM][BF\(_4\)]. \(\lambda_{exc}=370\ \text{nm}\).

<table>
<thead>
<tr>
<th>[BMIM][BF(_4)] (mM)</th>
<th>(\tau_1) (ns)</th>
<th>(\tau_2) (ns)</th>
<th>(\tau_3) (ns)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(\tau_{av}) (ns)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.24</td>
<td>1.82</td>
<td>0.99</td>
<td>0.01</td>
<td>0.26</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.95</td>
<td>0.18</td>
<td>0.40</td>
<td>1.98</td>
<td>0.87</td>
<td>0.12</td>
<td>0.01</td>
<td>0.23</td>
<td>1.12</td>
</tr>
<tr>
<td>12.29</td>
<td>0.23</td>
<td>0.67</td>
<td>3.31</td>
<td>0.96</td>
<td>0.03</td>
<td>0.01</td>
<td>0.27</td>
<td>1.14</td>
</tr>
<tr>
<td>19.51</td>
<td>0.23</td>
<td>0.77</td>
<td>4.03</td>
<td>0.96</td>
<td>0.03</td>
<td>0.01</td>
<td>0.28</td>
<td>1.11</td>
</tr>
<tr>
<td>28.99</td>
<td>0.26</td>
<td>0.72</td>
<td>4.08</td>
<td>0.97</td>
<td>0.02</td>
<td>0.01</td>
<td>0.31</td>
<td>1.11</td>
</tr>
<tr>
<td>38.27</td>
<td>0.26</td>
<td>1.64</td>
<td>5.25</td>
<td>0.97</td>
<td>0.02</td>
<td>0.01</td>
<td>0.34</td>
<td>1.13</td>
</tr>
<tr>
<td>51.89</td>
<td>0.29</td>
<td>1.68</td>
<td>5.26</td>
<td>0.97</td>
<td>0.02</td>
<td>0.01</td>
<td>0.37</td>
<td>1.23</td>
</tr>
<tr>
<td>65.11</td>
<td>0.29</td>
<td>1.72</td>
<td>6.14</td>
<td>0.97</td>
<td>0.02</td>
<td>0.01</td>
<td>0.38</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Table S4. Time resolved fluorescence decay parameters of tautomeric species of 3HF \((\lambda_{em}=550\ \text{nm})\) at different concentrations of [BMIM][C\(_8\)SO\(_4\)]. \(\lambda_{exc}=370\ \text{nm}\).

<table>
<thead>
<tr>
<th>[BMIM][C(_8)SO(_4)] (mM)</th>
<th>(\tau_1) (ns)</th>
<th>(\tau_2) (ns)</th>
<th>(\tau_3) (ns)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(\tau_{av}) (ns)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.24</td>
<td>1.82</td>
<td>0.99</td>
<td>0.01</td>
<td>0.26</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.48</td>
<td>0.23</td>
<td>1.07</td>
<td>5.59</td>
<td>0.95</td>
<td>0.04</td>
<td>0.01</td>
<td>0.32</td>
<td>1.24</td>
</tr>
<tr>
<td>4.95</td>
<td>0.24</td>
<td>1.41</td>
<td>5.95</td>
<td>0.94</td>
<td>0.04</td>
<td>0.02</td>
<td>0.40</td>
<td>1.17</td>
</tr>
<tr>
<td>9.86</td>
<td>0.27</td>
<td>1.82</td>
<td>6.56</td>
<td>0.91</td>
<td>0.07</td>
<td>0.02</td>
<td>0.50</td>
<td>1.01</td>
</tr>
<tr>
<td>17.11</td>
<td>0.31</td>
<td>1.85</td>
<td>7.03</td>
<td>0.86</td>
<td>0.12</td>
<td>0.02</td>
<td>0.62</td>
<td>1.14</td>
</tr>
<tr>
<td>24.27</td>
<td>0.35</td>
<td>2.07</td>
<td>7.37</td>
<td>0.81</td>
<td>0.16</td>
<td>0.03</td>
<td>0.84</td>
<td>1.10</td>
</tr>
<tr>
<td>28.99</td>
<td>0.37</td>
<td>2.09</td>
<td>7.65</td>
<td>0.80</td>
<td>0.16</td>
<td>0.04</td>
<td>0.94</td>
<td>1.09</td>
</tr>
<tr>
<td>33.65</td>
<td>0.39</td>
<td>1.81</td>
<td>7.15</td>
<td>0.75</td>
<td>0.20</td>
<td>0.05</td>
<td>1.02</td>
<td>1.15</td>
</tr>
<tr>
<td>40.57</td>
<td>0.65</td>
<td>2.03</td>
<td>7.29</td>
<td>0.83</td>
<td>0.13</td>
<td>0.04</td>
<td>1.09</td>
<td>1.14</td>
</tr>
<tr>
<td>49.64</td>
<td>0.65</td>
<td>2.00</td>
<td>7.62</td>
<td>0.82</td>
<td>0.14</td>
<td>0.04</td>
<td>1.12</td>
<td>1.04</td>
</tr>
<tr>
<td>58.54</td>
<td>0.71</td>
<td>2.63</td>
<td>7.98</td>
<td>0.87</td>
<td>0.10</td>
<td>0.03</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>67.28</td>
<td>0.71</td>
<td>2.39</td>
<td>7.76</td>
<td>0.86</td>
<td>0.11</td>
<td>0.03</td>
<td>1.11</td>
<td>1.01</td>
</tr>
</tbody>
</table>