Electronic Supplementary Information for

Substituted 6-oxoverdazyl bent-core nematic radicals: synthesis and characterization

Sylwia Ciastek,^[b] Marcin Jasiński,^[b] and Piotr Kaszyński*^[a]

[a] Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA, Faculty of Chemistry; University of Łódź, Tamka 12, 91403 Łódź, Poland; Department of Chemistry, Middle Tennessee University, Murfreesboro, TN 37123
[b] University of Łódź, Tamka 12, 91403 Łódź, Poland

Table of Content:

1. Additional synthetic details	S2
2. Multi-component mixtures	\$13
3. Partial data for TD-DFT calculation for 12	S14
4. Archive data for DFT calculations for 12	\$31
5. References	S34

1. Additional synthetic details

Synthesis of methyl glyoxylate 4-benzyloxyphenylhydrazone (4b).

Bno To a suspension of 4-benzyloxyphenylhydrazine hydrochloride^[1] (**2**, 2.92 g, 9.69 mmol) in dry THF (10 mL) was added triethylamine (1.3 mL, 9.69 mmol) followed by dropwise addition of a solution of crude, freshly prepared methyl glyoxylate^[2] (853 mg, 9.69 mmol) in THF (10 mL) at 0 °C. The mixture was stirred at room temperature overnight, filtered, and the filtrate was washed with 2% HCl (20 mL) and water (2 × 15 mL). After drying of the extracts over Na₂SO₄, the solvents were removed under reduced pressure, and the crude product was purified by flash column chromatography (SiO₂, CHCl₃/EtOAc 10:1) to give hydrazone **4b** as a yellow solid (1.37 g, 50%): mp 175-177 °C; ¹H NMR (CDCl₃, 600 MHz) δ 3.79 (s, 3H), 5.05 (s, 2H), 6.61 (s_{br}, 1H), 6.95 and 7.13 (2 d_{br}, *J* = 8.9 Hz, 2H each), 7.30-7.34 (m, 5H), 12.2 (s_{br}, 1H); ¹³C NMR (CDCl₃, 151 MHz) δ 51.1 (q), 70.6 (t), 115.2 (d), 115.9 (d), 116.8 (d), 127.5 (d), 127.9 (d), 128.6 (d), 137.0 (s), 137.1 (s, higher int.), 154.9 (s), 164.2 (s); IR (KBr) *v* 3265 (NH), 1700 (C=O), 1540, 1505, 1220, 1155 cm⁻¹; ESI-MS (*m*/*z*): 307 (100, [M+Na]⁺).

Synthesis of hydrazones 5.

^{BZO} To a suspension of 4-benzoyloxyphenylhydrazine hydrochloride^[1] (**3**, 2.65 g, 10.0 mmol) in EtOH (40 mL) the corresponding aldehyde (11.0 mmol) was added dropwise at 0 °C, and the resulting mixture was stirred at room temperature overnight. The mixture was placed in the fridge for 6 hrs, the precipitate was filtered, washed with several portions of cooled ethanol, and air dried to give crude hydrazone, that was used for the next step without further purification. Spectroscopically pure samples were obtained by recrystallization from EtOH.

2-Thienal 4-benzoyloxyphenylhydrazone (5c).

B20 Yellowish crystals (2.48 g, 77%); mp 189-192 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.01 (dd, J = 5.0, 3.6 Hz, 1H), 7.09 (d_{br}, J = 3.6 Hz, 1H), 7.10-7.14 (m, 4H), 7.26 (d_{br}, J = 4.9 Hz, 1H), 7.51 (t_{br}, J = 7.8 Hz, 2H), 7.58 (s_{br}, 1H), 7.61-7.64 (m, 1H), 7.87 (s, 1H), 8.21 (dd_{br}, $J_I = 8.3$ Hz, $J_2 = 1.3$ Hz, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 113.4 (d), 122.3 (d), 126.0 (d), 126.5 (d), 127.2 (d), 128.5 (d), 129.9 (s), 130.1 (d), 132.5 (d), 133.4 (d), 140.4 (s), 142.4 (s), 144.3 (s), 165.6 (s); IR (KBr) ν 3310 (NH), 1715 (C=O), 1605, 1535, 1515, 1500, 1265, 1195 cm⁻¹; ESI-MS (m/z): 345 (100, [M+Na]⁺), 323 (14, [M+H]⁺).

3-Flurobenzaldehyde 4-benzoyloxyphenylhydrazone (5e).

Off-white solid (2.47 g, 74%); mp 191-194 °C; ¹H NMR (CDCl₃, 600 MHz) δ 6.97-7.02 (m, 1H), 7.15 (s_{br}, 4H), 7.33 (td, J_1 = 7.8 Hz, J_2 = 5.7 Hz, 1H), 7.37 (d_{br}, J = 7.7 Hz, 1 H), 7.40-7.43 (m, 1H), 7.51 (t_{br}, J = 7.8 Hz, 2H), 7.62-7.65 (m, 1H), 7.67 (s, 1H), 8.21 (dd_{br}, J_1 = 8.5 Hz, J_2 = 1.3 Hz, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 112.3 (d, q: ² J_{C-F} = 22.8 Hz), 113.4 (d), 115.3 (d, q: ² J_{C-F} = 21.7 Hz), 122.1 (d, q: ⁴ J_{C-F} = 2.7 Hz), 128.5 (d), 130.0 (d, q: ³ J_{C-F} = 8.4 Hz), 130.1 (d), 133.4 (d), 135.9 (d, q: ⁴ J_{C-F} = 3.4 Hz), 137.6 (s, q: ³ J_{C-F} = 8.1 Hz), 142.2 (s), 144.5 (s), 163.2 (s, q: ¹ J_{C-F} = 245.5 Hz), 165.6 (s); {¹H}¹⁹F-NMR (CDCl₃, 565 MHz) δ –113.2; IR (KBr) ν 3300 (NH), 1715 (C=O), 1590, 1535, 1505, 1280, 1265, 1195, 1130 cm⁻¹; ESI-MS (m/z): 357 (100, [M+Na]⁺), 335 (34, [M+H]⁺).

2-Flurobenzaldehyde 4-benzoyloxyphenylhydrazone (5f).

B₂₀ Off-white solid (2.54 g, 76%); mp 202-205 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.03-7.08 (m, 1H), 7.13-7.19 (m, 5H), 7.25-7.29 (m, 1H), 7.51 (t_{br}, *J* = 7.6 Hz, 2H), 7.63 (t_{br}, J = 7.6 Hz, 1H), 7.79 (s_{br}, 1H, NH), 7.96 (s, 1H), 8.01 (t, *J* = 7.5 Hz, 1H), 8.21 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 113.4 (d), 115.6 (d, ²*J*_{C-F} = 21.0 Hz), 122.4 (d) 123.1 (s, q: ²*J*_{C-F} = 10.0 Hz), 124.3 (d, q: ³*J*_{C-F} = 3.4 Hz), 126.2 (d, q: ⁴*J*_{C-F} = 3.0 Hz), 128.5 (d), 129.6 (d, q: ³*J*_{C-F} = 8.2 Hz), 129.8 (s), 130.1 (d), 130.4 (d, q: ³*J*_{C-F} = 4.9 Hz), 133.4 (d), 142.3 (s), 144.5 (s), 160.5 (s, q: ¹*J*_{C-F} = 245 Hz), 165.6 (s); {¹H}¹⁹F-NMR (CDCl₃, 565 MHz) δ –122.4; IR (KBr) *v* 3305 (NH), 1715 (C=O), 1535, 1505, 1280, 1195, 1090 cm⁻¹; ESI-MS (*m*/*z*): 357 (100, [M+Na]⁺), 335 (11, [M+H]⁺).

Synthesis of carbamoyl chlorides 6 and 7.

in dry CH₂Cl₂ (50 mL), pyridine (797 mg, 810 μ L, 10.0 mmol) followed by solution of triphosgene (2.45 g, 8.25 mmol) in CH₂Cl₂ (8 mL) were added. The mixture was stirred at room temperature for 2-5 hrs (TLC monitoring) and quenched with 2% HCl (35 mL). The mixture was extracted with CH₂Cl₂ (2 × 30 mL), the organic layer was washed with H₂O (25 mL), extracts were dried (MgSO₄), and solvents were removed in *vacuo*. Crude product was flash chromatographed to yield product **6** or **7**, respectively.

To a solution of hydrazone **4** or **5** (8.25 mmol)

156 °C; ¹H NMR (CDCl₃, 600 MHz) δ 3.86 (s, 3H), 5.11 (s, 2H), 6.78 (s, 1H), 7.09 and 7.13 (2 d_{br}, *J* = 8.9 Hz, 2H each), 7.33-7.46 (m, 5H); ¹³C NMR (CDCl₃, 151 MHz) δ 52.7 (q), 70.5 (t), 116.9 (d), 127.4 (s), 127.5 (d), 128.3 (d), 128.7 (d), 129.4 (d, broad), 135.8 (d, broad), 136.0 (s), 150.9 (s, broad), 160.3 (s), 162.9 (s); IR (KBr) *v* 1755 (C=O), 1725 (C=O), 1605 (C=C), 1505, 1375, 1300, 1245, 1185, 1030, 1015 cm⁻¹; ESI-MS (*m/z*): 369 (100, [M+Na]⁺).

2-Thienal α -chloroformyl-4-benzoyloxyphenylhydrazone (7c).

^{BZO} SiO₂ (CHCl₃/petroleum ether 3:1); pale yellow crystals (3.14 g, 99%); mp 160-161 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.04 (dd, J = 3.7, 5.0 Hz, 1H), 7.21 (dd, J = 0.9, 3.7 Hz, 1H), 7.35 (d_{br}, J = 8.7 Hz, 2H), 7.43 (dt, J = 0.9, 5.0 Hz, 1H), 7.47 (d_{br}, J = 8.7 Hz, 2H), 7.53-7.56 (m, 2H), 7.64 (s_{br}, 1H), 7.67-7.70 (m, 1H), 8.22 (dd_{br}, J = 1.3, 8.4 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 151 MHz) δ 123.9 (d), 127.6 (d), 128.7 (d, higher int.), 129.0 (d), 129.4 (s), 130.1 (s), 130.3 (d, higher int.), 131.3 (s), 133.6 (d), 134.0 (d), 138.2 (s), 152.0 (s), 164.7 (s); IR (KBr) ν 1735, 1505, 1285, 1265, 1185, 1200, 1055 cm⁻¹; ESI-MS (m/z): 385 (100, [M+H]⁺). Anal. Calcd for C₁₉H₁₃ClN₂O₃S (384.0): C 59.30, H 3.40. Found: C 59.41, H 3.38.

3-Flurobenzaldehyde α -chloroformyl-4-benzoyloxyphenyl-hydrazone (7e).

^{BZO}SiO₂ (CH₂Cl₂); pale yellow crystals (2.68 g, 82%); mp 131-134 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.11 (tdd, J = 1.2, 2.6, 8.3 Hz, 1H), 7.34-7.43 (m, 5H), 7.46-7.49 (m, 3H), 7.56 (t_{br}, J = 7.8 Hz, 2H), 7.67-7.70 (m, 1H), 8.23 (dd_{br}, J = 1.2, 8.3Hz, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 113.9 (d, q: ²J_{C-F} = 22.8 Hz), 117.7 (d, q: ²J_{C-F} = 21.6 Hz), 124.0 (d), 124.1 (d, q: ${}^{4}J_{C-F} = 2.6$ Hz), 128.7 (d), 128.9 (s), 130.0 (d, broad), 130.2 (d), 130.3 (d, q: ${}^{3}J_{C-F} = 8.2$ Hz), 133.2 (d, broad), 134.0 (d), 135.5 (s, q: ${}^{3}J_{C-F} = 7.9$ Hz), 144.7 (s, broad), 150.5 (s, broad), 152.1 (s), 163.0 (s, q: ${}^{1}J_{C-F} = 247.0$ Hz), 164.6 (s); ${}^{1}H{}^{19}F-NMR$ (CDCl₃, 565 MHz) δ –112.2; IR (KBr) ν 1720 (C=O), 1505, 1265, 1205 cm⁻¹; ESI-MS (*m*/*z*): 419 (23, [M+Na]⁺), 397 (100, [M+H]⁺). Anal. Calcd for C₂₁H₁₄ClFN₂O₃ (396.1): C 63.56, H 3.56. Found: C 63.82, H 3.50.

2-Flurobenzaldehyde α -chloroformyl-4-benzoyloxyphenyl-hydrazone (7f).

^{B2O}SiO₂ (CH₂Cl₂/petroleum ether 5:1); pale yellow crystals (3.17 g, 97%); mp 162-164 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.03-7.06 (m, 1H), 7.21 (t_{br}, *J* = 7.6 Hz, 1H), 7.35 (d_{br}, *J* = 8.7 Hz, 2H), 7.37-7.41 (m, 1H), 7.49 (d_{br}, *J* = 8.7 Hz, 2H), 7.55 (t_{br}, *J* = 7.8 Hz, 2H), 7.66-7.69 (m, 1H), 7.73 (s), 8.08 (td, *J* = 1.7, 7.6 Hz, 1H), 8.23 (dd_{br}, *J* = 1.2, 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 115.8 (d, q: ²*J*_{C-F} = 20.9 Hz), 121.2 (s, ²*J*_{C-F} = 10.0 Hz), 124.0 (d), 124.6 (d, q: ³*J*_{C-F} = 3.5 Hz), 127.3 (d, q: ⁴*J*_{C-F} = 1.8 Hz), 128.7 (d), 129.1 (d), 130.0 (s, broad), 130.1 (d, q: ³*J*_{C-F} = 1.9 Hz), 130.3 (d), 132.4 (d, q: ³*J*_{C-F} = 8.5 Hz), 134.0 (d), 152.1 (s), 161.7 (s, q: ¹*J*_{C-F} = 253.1 Hz), 164.5 (s), two C atoms were not found; {¹H}¹⁹F-NMR (CDCl₃, 565 MHz) δ -120.1; IR (KBr) *v* 1720 (C=O), 1275, 1205 cm⁻¹; ESI-MS (*m*/*z*): 419 (92, [M+Na]⁺), 397 (100, [M+H]⁺). Anal. Calcd for C₂₁H₁₄CIFN₂O₃ (396.1): C 63.56, H 3.56. Found: C 63.55, H 3.53.

Synthesis of tetrazines 8 and 9.

prepared carbamoyl chloride 6 or 7 (2.00 mmol) in ethanol (20 mL), appropriate arylhydrazine hydrochloride (2, 529 mg, 2.00 mmol or 3, 605 mg, 2.00 mmol,

respectively) followed by Et_3N (0.62 mL, 4.2 mmol) were added. The resulting mixture was heated at 60 °C for 6 hrs, and left in the fridge overnight. The precipitate was filtered, washed with several portions of cold EtOH, and dried under high vacuum to afford crude tetrazine **8** or **9**, which was used for the next step without further purification.

1,5-bis(4-Benzoyloxyphenyl)-3-methoxycarbonyl-tetrahydro-1,2,4,5-tetrazin-3(2H)-one (8b).

^{BnO} OBn Off-white solid (535 mg, 51%); mp 201-203 °C (decomp); ¹H NMR (DMSO- d_6 , 600 MHz) δ 3.70 (s, 3H), 4.91 (t, J = 7.3 Hz, 1H), 5.09 (s, 4H), 6.43 (d, J = 7.3 Hz, 2H), 6.95 (d_{br}, J = 9.1 Hz, 4H), 7.30-7.34 (m, 2H), 7.37-7.46 (m, 12H) ppm; ¹³C NMR (DMSO- d_6 , 151 MHz) δ 52.2 (q), 69.4 (2C), 114.1 (d), 123.6 (d), 127.5 (d), 127.7 (d), 128.4 (d), 136.1 (s), 137.2 (s), 154.8 (s), 155.6 (s), 168.6 (s); IR (KBr) ν 3215 (NH), 1755 (C=O), 1620, 1600, 1505, 1430, 1240 cm⁻¹; EI-MS (m/z): 524 (7, [M]⁺), 91 (100, [Bn]⁺). Anal. Calcd for C₃₀H₂₈N₄O₅ (524.2): C 68.69, H 5.38, N 10.68. Found: C 68.40, H 5.54, N 10.41.

1,5-bis(4-Benzoyloxyphenyl)-3-(thien-2-yl)tetrahydro-1,2,4,5-tetrazin-3(2H)-one (9c).

^{BZO} O^{BZ} Off-white solid (992 mg, 86%); mp 197-198 °C (decomp.); ¹H NMR (DMSO- d_6 , 600 MHz) δ 5.68 (t, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 7.05 (dd, J = 3.6, 5.0 Hz, 1H), 7.17-7.19 (m, 1H), 7.26 (d_{br}, J = 9.0, 4H), 7.50 (dd, J = 0.9, 5.0 Hz, 1H), 7.62 (t_{br}, J = 7.8 Hz, 4H), 7.68 (d_{br}, J = 9.0, 4H), 7.74-7.78 (m, 2H), 8.15 (dd_{br}, J= 1.2, 8.3 Hz, 4H); ¹³C NMR (DMSO- d_6 , 151 MHz) δ 69.8 (d), 121.8 (d), 122.7 (d), 126.0 (d), 126.5 (d), 127.6 (d), 129.4 (d), 129.5 (d), 130.2 (d), 134.5 (s), 140.9 (s), 141.4 (s), 146.8 (d), 156.8 (s), 165.2 (s); IR (KBr) v 3245 and 3220 (NH), 1735 (C=O), 1630, 1505, 1395, 1270, 1205, 1080 cm⁻¹; ESI-MS (*m*/*z*): 599 (11, [M+Na]⁺), 577 (100, [M+H]⁺).

1,5-bis(4-Benzoyloxyphenyl)-3-(3-fluorophenyl)tetrahydro-1,2,4,5-tetrazin-3(2H)-one (9e).

^{BZO} O^{BZ} Off-white solid (989 mg, 84%); mp 212-213 °C (decomp.); ¹H NMR (DMSO-*d*₆, 600 MHz) δ 5.50 (t, *J* = 8.9 Hz, 1H), 6.57 (d, *J* = 8.9 Hz, 2H), 7.16-7.21 (m, 1H), 7.27 (d_{br}, *J* = 8.8 Hz, 4H), 7.36 (d_{br}, *J* = 10.2 Hz, 1H), 7.41-7.46 (m, 2H), 7.62 (t_{br}, *J* = 7.7 Hz, 4H), 7.69 (d_{br}, *J* = 8.8 Hz, 4H), 7.76 (t_{br}, *J* = 7.4 Hz, 2H), 8.15 (d_{br}, *J* = 7.7 Hz, 4H); ¹³C NMR (CDCl₃, 151 MHz) δ 72.1 (d), 113.8 (d, q: ²*J*_{C-F} = 22.5 Hz), 115.0 (d, q: ²*J*_{C-F} = 20.9 Hz), 121.3 (d), 122.1 (d), 123.1 (d, q: ⁴*J*_{C-F} = 2.5 Hz), 128.9 (d), 129.0 (s), 129.7 (d), 130.4 (d, q: ³*J*_{C-F} = 8.2 Hz), 133.9 (d), 140.3 (s, q: ³*J*_{C-F} = 7.5 Hz), 140.4 (s), 146.3 (s), 156.7 (s), 162.0 (s, q: ¹*J*_{C-F} = 243.4 Hz), 164.7 (s); {¹H}¹⁹F-NMR (CDCl₃, 565 MHz) δ -112.8; IR (KBr) v 3240 (NH), 1740 (C=O), 1625, 1500, 1365, 1270, 1200, 1065 cm⁻¹; ESI-MS (*m*/*z*): 611 (100, [M+Na]⁺), 589 (61, [M+H]⁺).

1,5-bis(4-Benzoyloxyphenyl)-3-(2-fluorophenyl)tetrahydro-1,2,4,5-tetrazin-3(2H)-one (9f).

OBz Off-white solid (718 mg, 61%); mp 210-214 °C (decomp.);

¹H NMR (DMSO- d_6 , 600 MHz) δ 5.64 (t, J = 9.3 Hz, 1H), 6.61 (d, J = 9.3 Hz, 2H), 7.20 (t_{br}, J = 7.6 Hz, 1H), 7.27 (d_{br}, J = 9.0 Hz, 4H), 7.25-7.28 (m 1H), 7.40-7.44 (m, 1H), 7.50-7.54 (m, 1H), 7.62 (t_{br}, J = 7.8 Hz, 4H), 7.67 (d_{br}, J = 9.0 Hz, 4H), 7.74-7.78 (m,

2H), 8.15 (d_{br} , J = 7.2 Hz, 4H); ¹³C NMR (DMSO- d_6 , 151 MHz) δ 68.1 (d), 115.5 (d, q: ² $J_{C-F} = 21.6$ Hz), 121.4 (d), 121.5 (d), 124.5 (d, q: ⁴ $J_{C-F} = 2.6$ Hz), 124.9 (s, q: ² $J_{C-F} = 13.8$ Hz), 128.2 (d, q: ³ $J_{C-F} = 3.1$ Hz), 128.9 (d), 129.0 (d), 129.7 (d), 130.5 (d, q: ³ $J_{C-F} = 7.4$ Hz), 133.9 (s), 140.2 (s), 146.2 (s), 158.2 (s), 159.7 (s, q: ¹ $J_{C-F} = 246.9$ Hz), 164.7 (s); {¹H}¹⁹F-NMR (CDCl₃, 565 MHz) δ –117.3; IR (KBr) ν 3280 and 3255 (NH), 1735 (C=O), 1640, 1505, 1390, 1265, 1200, 1065 cm⁻¹; ESI-MS (m/z): 611 (100, [M+Na]⁺), 589 (12, [M+H]⁺).

Synthesis of protected diphenols 10 and 11.

tetrazine **8** or **9** (5.0 mmol) in CH₂Cl₂ (100 mL), K₃Fe(CN)₆ (9.9 g, 30.1 mmol), Na₂CO₃ (0.5 M, 100 mL), and $[Et_4N]^+Br^-$ (210 mg, 20 mol%) were added. The resulting mixture was vigorously stirred for 20h (TLC monitoring), the organic layer was separated, dried (Na₂SO₄), filtered, and the solvent was removed under reduced pressure. Crude product was flash chromatographed (SiO₂, CH₂Cl₂) to furnish radical **10** or **11** as a deeply colored solid.

OBz

Method A: To a mixture of

Method B: To a mixture of tetrazine **8** or **9** (5.0 mmol) in CH_2Cl_2 (100 mL), a mixture of NaIO₄ (2.14 g, 10.0 mmol), and $[Et_4N]^+Br^-$ (420 mg, 40 mol%) in H₂O (100 mL) was added. The resulting mixture was vigorously stirred for 48h (TLC monitoring), the organic layer was separated, dried (Na₂SO₄), filtered, and the solvent was removed under reduced pressure. Crude product was flash chromatographed (SiO₂, CH₂Cl₂) to furnish radical **10** or **11**. Analytically pure samples were obtained by additional chromatography purification.

1,5-bis(4-Benzyloxyphenyl)-3-methoxycarbonyl-6-oxoverdazyl (10b).

OBn Wine-red crystals (Method A: reaction time 48 h, 1.36 g,

52%; *Method B*: reaction time 18 h, 1.30 g, 50%); mp 178-180 °C; IR (KBr) v 1735 (C=O), 1700 (C=O), 1600, 1500, 1245, 1165 cm⁻¹; EI-MS (*m/z*): 522 (15, [M+H]⁺), 521 (11, [M]⁺], 431 (11, [M-Bn+H]⁺), 91 (100, [Bn]⁺). Anal. Calcd for C₃₀H₂₅N₄O₅ (521.2): C 69.09, H 4.83, N 10.74. Found: C 69.32, H 5.02, N 10.46.

1,5-bis(4-Benzoyloxyphenyl)-6-oxo-3-(thien-2-yl)verdazyl (11c).

^{BZO} O^{BZ} Green solid (*Method A*: 2.06 g, 72%; *Method B*: 1.78 g, 62%); mp 225-227 °C; IR (KBr) ν 1740, 1690, 1505, 1265, 1210, 1060 cm⁻¹; ESI-MS (*m/z*): 596 (100, [M+Na]⁺), 573 (85, M⁺); EI-MS (*m/z*): 573 (7, M+), 105 (100). Anal. Calcd for C₃₂H₂₁N₄O₅S (573.1): C 67.01, H 3.69, N 9.77. Found: C 66.93, H 3.84, N 9.76.

1,5-bis(4-Benzoyloxyphenyl)-3-(3-fluorophenyl)-6-oxoverdazyl (11e).

^{BZO} OB^Z Pink-red solid (*Method A*: 2.57 g, 88%; *Method B*: 1.37 g, 47%); mp 254-255 °C; IR (KBr) v 1745, 1695, 1505, 1270, 1205, 1060 cm⁻¹; ESI-MS (*m/z*): 586 (2, [M+H]+), 571 (4, [M-N]⁺), 557 (11, [M-CO]⁺), 413 (100). Anal. Calcd for C₃₄H₂₂FN₄O₅ (585.2): C 69.74, H 3.79. Found: C 69.82, H 3.61.

1,5-bis(4-Benzoyloxyphenyl)-3-(2-fluorophenyl)-6-oxoverdazyl (11f).

^{BZO} OBZ Pink-red solid (*Method A*: 2.31 g, 79%; *Method B*: 1.26 g, 43%); mp 198-199 °C; IR (KBr) v 1740, 1700, 1505, 1265, 1210, 1165, 1060 cm⁻¹; EI-

MS (*m*/*z*): 586 (2, M⁺), s105 (100). Anal. Calcd for $C_{34}H_{22}FN_4O_5$ (585.2): C 69.74, H 3.79. Found: C 69.70, H 3.96.

Synthesis of diphenol radicals 12 by hydrolysis of dibenzoates 11.

HO TO A mixture of dibenzoyloxy radical **11** (1.0 mmol) in dry CH_2Cl_2 (30 mL) a solution of KOH (0.1M in methanol, 21 mL, 2.1 mmol) was added dropwise at 0 °C under vigorous stirring. After ca. 30 min (TLC monitoring, $CH_2Cl_2/EtOAc$ 5:1) the mixture was diluted with water (400 mL), EtOAc (200 mL) was added and the layers were separated. The organic layer was washed with H_2O (3 × 60 mL), dried over MgSO₄, filtered and the solvents were removed in *vacuo* (cold bath!). Crude product was pre-purified on chromatography column (SiO₂, $CH_2Cl_2/EtOAc$ 7:1) to give solid diphenol verdazyl **12** that was used for the next step as received.

Synthesis of 1,5-bis(4-hydroxyphenyl)-6-oxo-3-phenylverdazyl (**12d**) was reported recently.^[1]

1,5-bis(4-hydroxyphenyl)-6-oxo-3-(thien-2-yl)verdazyl (12c).

но он Deep green crystals (241 mg, 66%); mp 179-181 °C (decomp); IR (KBr) v 3420 (OH), 1670 (C=O), 1600, 1510, 1450, 1215 cm⁻¹.

1,5-bis(4-hydroxyphenyl)-3-(3-fluorophenyl)-6-oxoverdazyl (12e).

H Dark violet crystals (219 mg, 58%); mp 204-206 °C

(decomp.); IR (KBr) v 3550-3425 (OH), 1685 (C=O), 1605, 1510, 1270 cm⁻¹.

1,5-bis(4-hydroxyphenyl)-3-(2-fluorophenyl)-6-oxoverdazyl (12f).

но он Dark violet solid (155 mg, 41%); mp 187-190 °C (decomp.); IR (KBr) v 3560-3400 (OH), 1670 (C=O), 1600, 1515, 1460, 1225 cm⁻¹.

Synthesis of 1,5-bis(4-hydroxyphenyl)-3-methoxycarbonyl-6-oxoverdazyl (12b).

^{HO} ^O ^O ^H To a suspension of 10% Pd/C (250 mg) in EtOH (82 mL) a solution of dibenzyloxy verdazyl **10b** (900 mg, 1.73 mmol) in THF (64 mL) was added, and the resulting mixture was hydrogenated at 50 psi for 48h. The resulting colorless mixture was oxidized with air for ca. 20 min (TLC monitoring, $CH_2Cl_2/EtOAc$, 10:1) and filtered through Celite, solvents were removed under reduced pressure (cold bath!), and the crude mixture was purified by column chromatography (SiO₂, $CH_2Cl_2/EtOAc$, 7:1) to afford partially purified diphenol radical **12b** (121 mg, 20% yield) as a red-brown solid that was used for the next step without further purification; mp 188-191 °C (decomp); IR (KBr) v 3420 (OH), 1700, 1600, 1515, 1450, 1225, 1160 cm⁻¹.

2. Multi-component mixtures

		В	Sinary mixtures in 1[12]a
	pure compounds / °C	mol%	Transition temperatures for binary mixtures / °C
1[12]b	Cr 138.6 N 161.4 I ^[b]	9.9	Cr 134.3 N 160.1 I ^[b]
1[12]c	Cr 153.4 I	12.9	Cr 135.1 (I _{re} 123.5) ^[c] N 150.5 I
1[12]d	Cr 156.8 I	8.5	Cr 134.0 (I _{re} 123.1) ^[c] N 153.2 I
1[12]e	Cr 177.1 (N 169.0) I	8.3	Cr 133.9 (I _{re} 120.6) ^[c] N 155.8 I
1[12]f	Cr 155.3 I	10.7	Cr 135.1 (I _{re} 124.0) ^[c] N 144.8 I
1[16]c	Cr 148.5 I	9.5	Cr 135.3 (I _{re} 124.3) ^[c] N 146.5 I
1[16]d	Cr 159.8 I	10.2	Cr 134.1 (I _{re} 123.5) ^[c] N 147.2 I

Table S1. Thermal properties of pure compounds and binary mixtures in 1[12]a.^[a]

[a] Cr = crystal, N = nematic, I and I_{re} = isotropic; transition temperatures for pure **1[12]a**: Cr 136.9 (I_{re} 121.6) N 152.3 I. [b] Decomposition. [c] Monotropic transition observed on cooling.

								с 1
Table S2. [Thermal 1	properties	of multi-o	component	mixtures	with 1	1[12]a.	[a]
				r				

	Composition (mole%)	Transition temperatures /°C
1	1[12]d (10.0) 1[12]c (9.6) 1[12]a (80.3)	Cr 130.9 (I _{re} 123.0) ^[b] N 149.7 I
2	1[12]d (24.9) 1[12]c (24.2) 1[12]a (50.9)	Cr 124.8 $(I_{re} 103.8)^{[b]}$ N 138.0 I
3	1[12]d (33.5) 1[12]c (32.6) 1[12]a (33.9)	Cr 141.7 I ^[c]
4	1[12]d (27.4) 1[12]c (50.4) 1[12]a (22.1)	Cr 145.6 I ^[c]
5	1[12]d (24.0) 1[12]c (26.9) 1[12]e (24.9) 1[12]a (24.1)	Cr 155.4 I ^[c]

[a] Cr = crystal, N = nematic, I and $I_{re} = isotropic$. [b] Monotropic transition observed on cooling. [c] Non-homogenous.

3. Partial data for TD-DFT calculation for 12 in dioxane dielectric medium

B3LYP/6-31G(2d,p)// CAM-B3LYP/6-31G(2d,p)

12a Excitation energies and oscillator strengths: Excited State 1: 2.044-A 2.2840 eV 542.85 nm f=0.1816 <S**2>=0.795 84B -> 90B 0.11272 85B -> 90B -0.12128 89B -> 90B 0.97428 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1321.72194688Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.087-A 2.7088 eV 457.71 nm f=0.0440 <S**2>=0.839 90A -> 95A -0.11199 88B -> 90B 0.97839 Excited State 3: 2.034-A 2.8941 eV 428.41 nm f=0.0120 <S**2>=0.784 83B -> 90B -0.16794 85B -> 90B 0.94366 87B -> 90B -0.19210 89B -> 90B 0.10860 4: 2.041-A 3.0095 eV 411.97 nm f=0.0014 Excited State <S**2>=0.792 88A -> 91A -0.16792 90A -> 91A 0.94805 84B -> 90B -0.14175 Excited State 5: 2.057-A 3.4322 eV 361.24 nm f=0.0005 <S**2>=0.808 85B -> 90B 0.18444 87B -> 90B 0.96477 6: 2.062-A 3.4814 eV 356.13 nm f=0.0005 Excited State <S**2>=0.813 -0.12072 90A -> 92A 86B -> 90B 0.98037 Excited State 7: 2.055-A 3.6921 eV 335.81 nm f=0.0069 <S**2>=0.806 90A -> 91A 0.17612 90A -> 96A 0.16037 84B -> 90B 0.93509 89B -> 90B -0.12955 Excited State 8: 3.294-A 3.7550 eV 330.19 nm f=0.0155 <S**2>=2.462 86A -> 92A 0.24083 87A -> 93A 0.23611 88A -> 95A -0.17816

89A -> 91 89A -> 94 90A -> 95 86B -> 92 87B -> 93 88B -> 90 88B -> 95 89B -> 91 89B -> 91	A A A B B B B B B B B B B B B B B B B B	-0.29813 0.30526 0.16504 -0.36970 0.22822 -0.21795 -0.16022 -0.26516 0.37142 -0.29778					
Excited State	9:	3.122-A	3.7600	eV	329.74	nm	f=0.0920
<s**2>=2.187</s**2>							
86A -> 93	A	0.23246					
87A -> 92	A -	0.23604					
88A -> 91	A	-0.14138					
88A -> 94	A	0.14429					
89A -> 95	A A	-0.31/35					
90A -> 94	A A	0.5/151					
90A -> 95	A D	0.22640					
87B -> 92	D B	-0.22040					
88B -> 91	B	-0.23857					
88B -> 94	B	0.22509					
89B -> 90	B	0.11976					
89B -> 91	В	-0.10844					
89B -> 95	В	0.29844					
Excited State	10:	2.718-A	3.9182	eV	316.43	nm	f=0.0016
<s**2>=1.597</s**2>							
88A -> 92	A	0.13114					
89A -> 93	A	0.31386					
90A -> 92	A	0.82277					
86B -> 90	В	0.12785					
88B -> 92	В	-0.24775					
89B -> 93	В	-0.30223					
Excited State	11:	2.773-A	3.9438	eV	314.38	nm	f=0.0088
<s**2>=1.672</s**2>							
88A -> 93	A	0.13910					
89A -> 92	A	0.34210					
90A -> 93	A	0.80628					
0/B -> 90 88B > 03	D D	0.10095					
89B -> 92	B	0.32981					
Excited State	12:	3.398-A	4.1921	eV	295.76	nm	f=0.0014
84A -> 91	Δ	-0.24391					
86A -> 92	A	-0.16287					
87A -> 93	A	-0.15985					
89A -> 91	A	-0.51793					
89A -> 94	A	-0.15427					
90A -> 95	A	0.23900					
84B -> 91	В	0.26432					
86B -> 92	В	-0.15354					
87B -> 93	В	0.14774					
88B -> 95	В	0.10284					

89B 89B	-> ->	91B 94B		0.56550 0.20689					
Excited	Sta	ate	13:	2.852-A	4.4227	eV	280.33	nm	f=0.1503
<s**2>=1</s**2>	.783	3							
86A	->	93A		-0.33448					
87A	->	92A		-0.34124					
88A	->	94A		-0.12268					
90A	->	91A		-0.13179					
90A	->	94A		0.64757					
84B	->	90B		0.11969					
86B	->	93B		0.33569					
87B	->	92B		-0.34588					
88B	->	91B		-0.11334					
88B	->	94B		-0.11010					

12b

Excitation energies and oscillator strengths:

2.3436 eV 529.03 nm f=0.1338 Excited State 1: 2.040-A <S**2>=0.790 89A -> 90A -0.30885 83B -> 89B 0.13056 85B -> 89B 0.12079 88B -> 89B 0.91100 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1212.56319540Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.022-A 2.4988 eV 496.18 nm f=0.0270 <S**2>=0.772 -0.15289 87A -> 90A 89A -> 90A 0.90791 88B -> 89B 0.30043 3: 2.105-A 2.7803 eV 445.93 nm f=0.0481 Excited State <S**2>=0.858 89A -> 94A 0.12053 87B -> 89B 0.97307 Excited State 4: 2.046-A 2.8300 eV 438.10 nm f=0.0188 <S**2>=0.796 80B -> 89B -0.15996 -0.11588 83B -> 89B 84B -> 89B 0.47381 85B -> 89B 0.69794 86B -> 89B 0.41799 88B -> 89B -0.17784 Excited State 5: 2.071-A 3.5256 eV 351.66 nm f=0.0005 <S**2>=0.822 89A -> 93A -0.13752 84B -> 89B -0.19939 85B -> 89B -0.38151 86B -> 89B 0.87934

Excited State	6:	2.096-A	3.5844	eV	345.90	nm	f=0.0003
<s**2>=0.848</s**2>							
89A -> 91A		-0.19252					
84B -> 89B		0.81098					
85B -> 89B		-0.52125					
Evaited State	7.	2 925 A	2 6700	017	227 02	nm	f-0 1627
<pre><s**2>=1 759</s**2></pre>	<i>'</i> •	2.033-A	5.0700	ev	557.02	11111	1-0.1027
852 -> 912		_0 11089					
85A -> 93A		0 15385					
86A -> 91A		_0 16239					
87A > 02A		0 11662					
887 > 92A		0.26381					
00A -> 94A 00A > 02A		0.20501					
80A -> 92A 80A > 03A		0.09504					
09A -> 9JA		0.19197					
0JD -> 09D 0/D > 01D		0.10724					
04B -> 91B		0.13521					
05B -> 92B		-0.12/00					
00B -> 91B		-0.13000					
07B -> 90B		-0.14011					
8/B -> 93B		0.23505					
00B -> 04B		-0.1/510					
88B -> 94B		-0.24665					
Excited State	8:	3.341-A	3.7018	eV	334.93	nm	f=0.0077
<s**2>=2.541</s**2>							
82A -> 90A		0.13368					
85A -> 91A		-0.16319					
86A -> 93A		0.13663					
87A -> 94A		0.12261					
88A -> 90A		0.50447					
88A -> 92A		0.26538					
89A -> 94A		0.24528					
83B -> 89B		-0.14929					
83B -> 90B		-0.13945					
84B -> 91B		0.13397					
86B -> 92B		-0.12128					
87B -> 89B		-0.14934					
87B -> 94B		-0.17915					
88B -> 90B		-0.50288					
88B -> 93B		0.26497					
Excited State	g •	2 268-1	3 7299	οV	332 41	nm	f=0 0003
<s**2>=1.036</s**2>	<i>J</i> •	2•200-A	5.1255	<u> </u>	552.11		1 0.0000
87A -> 92A		-0.12564					
88A -> 94A		-0.16982					
A00 -> 90A		0.13750					
89A -> 95A		0.18103					
83B -> 89B		0.87619					
87B -> 93B							
88B -> 94B		0.12338					
	1.0	2 204 -	2 0550		201 66		C 0 0070
EXCITED State	10:	3.304-A	3.8550	eV	321.62	nm	I=0.0078
827 5007		0 121/0					
84A - 90A		0.12149					
852 -> 90A		0 21/00					
862 -> 91A		_0 10/57					
JUA -/ JJA		-0.1943/					

87A	-> 94	A	-0.14823			
88A	-> 90	A	0.46087			
88A	-> 92	A	-0.25060			
88A	-> 95	A	0.12273			
89A	-> 91	A	-0.19849			
89A	-> 94	A	-0.33975			
83B	-> 90	В	-0.15665			
84B	-> 91	B	-0.17162			
85B	-> 91	B	0.11111			
86B	-> 92	B	0 17768			
87B	_> 91	B	0 219/3			
89B	> 00	ם	0 33081			
00B	- 90	D D	-0.35001			
	-/ 93	D D	-0.20301			
00B	-> 95	в	0.11850			
Excited	State	11:	2.674-A	3.8782 eV	7 319.70 nm	f=0.0010
<s**2>=1.</s**2>	.537					
87A	-> 91	A	0.12086			
88A	-> 91	A	0.15991			
88A	-> 93	A	-0.24884			
89A	-> 91	A	0.81090			
89A	-> 94	A	-0.12690			
84B	-> 89	B	0.16785			
85B	-> 89	B	-0.11701			
87B	-> 91	B	_0 23254			
88B	_> 01	B	-0.14684			
885	> 02	ם	0 20150			
	-/ 92	D D	-0.20139			
000	-/ 93	Б	-0.13070			
Excited	State	12:	2.697-A	3.9064 eV	7 317.39 nm	f=0.0116
<s**2>=1</s**2>	.568					
87A	-> 93	A	0.11995			
88A	-> 91	A	-0.26499			
88A	-> 93	A	-0.16099			
89A	-> 92	A	-0.21635			
89A	-> 93	A	0.79981			
86B	-> 89	В	0.13905			
87B	-> 92	В	0.23227			
88B	-> 91	в	0.25308			
88B	-> 92	B	-0.17188			
Excited	State	13:	2.265-A	4.0961 eV	7 302.69 nm	f=0.0016
<s**2>=1.</s**2>	.033					
84A	-> 90	A	0.24235			
75B	-> 89	В	0.10100			
82B	-> 89	В	0.88819			
85B	-> 89	В	-0.10856			
85B	-> 90	В	-0.14216			
88B	-> 90	В	0.15325			
Freited	Stato	11.	2 056-3	1 1577 01	7 298 20 nm	f=0 0287
<s**3>=0</s**3>	806	14.	2.030-A		290.20 IIII	1-0.0207
0/7		л	0 10500			
04A 007	-~ 90	л Л	0.10399			
00A	-/ 90	n D	0.15007			
82B	-> 89	D D	-0.1002/			
85B	-> 90	в	0.108/0			
88B	-> 90	в	0.69337			

12c Excitation energies and oscillator strengths: Excited State 1: 2.014-A 2.1274 eV 582.80 nm f=0.0906 <S**2>=0.764 95A -> 96A -0.23213 92B -> 95B -0.10425 94B -> 95B 0.94870 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1536.51445103Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.046-A 2.6361 eV 470.34 nm f=0.0363 <S**2>=0.796 92A -> 96A 0.10306 95A -> 96A 0.65660 88B -> 95B 0.16836 89B -> 95B -0.20970 90B -> 95B 0.19190 92B -> 95B 0.59933 94B -> 95B 0.20695 Excited State 3: 2.323-A 2.8066 eV 441.76 nm f=0.0591 <S**2>=1.099 93A -> 96A 0.18127 94A -> 96A -0.18934 95A ->100A 0.11230 92B -> 96B -0.12032 93B -> 95B 0.90520 94B -> 96B 0.19612 Excited State 4: 2.042-A 2.8292 eV 438.23 nm f=0.0026 <S**2>=0.792 0.56982 95A -> 96A 86B -> 95B 0.12668 88B -> 95B -0.35130 89B -> 95B 0.43894 90B -> 95B -0.41858 92B -> 95B -0.31232 94B -> 95B 0.14694 Excited State 5: 2.921-A 3.0149 eV 411.24 nm f=0.0240 <S**2>=1.884 93A -> 96A 0.33289 94A -> 96A -0.34220 95A -> 96A 0.17463 88B -> 95B 0.18914 89B -> 95B -0.24482 90B -> 95B 0.24043 92B -> 95B -0.40108 92B -> 96B -0.28779 93B -> 95B -0.29366 94B -> 96B 0.42747 Excited State 6: 2.589-A 3.0534 eV 406.05 nm f=0.0246 <S**2>=1.425 93A -> 96A 0.25215

94A	-> 96A		-0.26709					
95A	-> 96A		-0.31584					
88B	-> 95B		-0.21336					
89B	-> 95B		0.26471					
90B	-> 95B		-0.26697					
92B	-> 95B		0.58345					
92B	-> 96B		-0.21727					
93B	-> 95B		-0.17820					
94B	-> 96B		0.33164					
Excited	State	7:	2.040-A	3.5673	eV	347.56	nm	f=0.0017
<s**2>=0</s**2>	.790							
91B	-> 95B		0.99099					
Excited	State	8:	2.092-A	3.6030	eV	344.11	nm	f=0.0003
<s**2>=0</s**2>	.844							
95A	-> 99A		0.17443					
88B	-> 95B		-0.33182					
89B	-> 95B		0.47021					
90B	-> 95B		0.77619					
Excited	State	9:	2.133-A	3.6551	eV	339.21	nm	f=0.0001
<s**2>=0</s**2>	.887							
95A	-> 97A		-0.30295					
88B	-> 95B		0.73946					
89B	-> 95B		0.56570					
Excited	State	10:	2.883-A	3.6738	eV	337.48	nm	f=0.1466
<s**2>=1</s**2>	.828							
89A	-> 98A		0.11630					
89A	-> 99A		0.15164					
90A	-> 97A		-0.18157					
92A	-> 98A		-0.11903					
93A	->100A		-0.12761					
94A	->100A		-0.25933					
95A	-> 98A		0.61561					
95A	-> 99A		-0.36334					
88B	-> 97B		-0.12697					
88B	-> 98B		-0.10043					
89B	-> 98B		-0.11516					
90B	-> 97B		0.14230					
92B	-> 95B		-0.10974					
92B	->100B		0.16157					
93B	-> 96B		0.11165					
93B	-> 98B		0.16912					
93B	-> 99B		-0.18799					
94B	-> 95B		-0.12450					
94B	->100B		0.21143					
	1002							
Excited	State	11:	3.266-A	3.7415	eV	331.38	nm	f=0.0298
<s**2>=2</s**2>	.416			_		-		-
89A	-> 97A		0.23808					
90A	-> 98A		-0.12275					
90A	-> 99A		-0.18407					
92A	->100A		-0.18698					
93A	-> 96A		-0.15741					
93A	-> 98A		-0.10452					
94A	-> 98A		-0.32337					

94A -> 99A	0.17908					
95A -> 97A	0.10638					
95A ->100A	0.39634					
88B -> 97B	-0.18123					
89B -> 97B	-0 13460					
	0 10576					
090 -> 900	0.10370					
90B -> 98B	0.13243					
90B -> 99B	0.11417					
92B -> 96B	0.13745					
92B -> 98B	0.13184					
92B -> 99B	-0.12058					
93B -> 95B	-0.18186					
93B ->100B	0.27042					
94B -> 96B	0,19981					
94B -> 98B	0.26493					
	0 26544					
94D - > 99D	-0.20344					
Excited State <s**2>=1.430 92A -> 97A</s**2>	12: 2.592-A -0.11363	3.8476	eV 322.	23 nm	f=0.0005	
94A -> 97A	-0.10287					
94A -> 99A	-0.21966					
95A -> 97A	0.80845					
88B -> 95B	0.26182					
89B -> 95B	0.19245					
92B -> 99B	0 10366					
	0 22242					
950 -> 97B	0.12696					
94B -> 98B	0.12080					
94B -> 99B	0.1/364					
Duraited Ctate	12. 2674 3	2 0717	-17 220	<u></u>	5-0 0000	
Excited State	13: 2.074-A	3.8/1/	ev 320.	23 1111	1=0.0090	
<s**2>=1.537</s**2>						
92A -> 99A	0.10917					
93A -> 97A	-0.10584					
94A -> 97A	-0.26757					
95A -> 98A	0.42667					
95A -> 99A	0.70264					
89B -> 95B	-0.11652					
90B -> 95B	_0 17133					
	0 14909					
920 -> 970	0.14008					
93B -> 98B	0.17200					
93B -> 99B	0.15944					
94B -> 97B	0.24021					
12d						
Excitation ener	gies and oscillato	or streng	ths:			
Excited State	1: 2.026-A	2.2533	eV 550.	25 nm	f=0.1141	
	0 10407					
94A -> 95A	-0.1949/					
89B -> 94B	-0.11494					
91B -> 94B	-0.11057					
93B -> 94B	0.94761					
This state for	optimization and/	'or secon	d-order	correct	zion.	
Total Energy,	E(TD-HF/TD-KS) =	-1215.75	523427			
Copying the ex	cited state densit	y for th	is state	as the	≥ 1-partic]	Le
RhoCI density.					-	
4						

Excited State <s**2>=0.782 92A -> 95A 94A -> 95A 88B -> 94B 89B -> 94B 91B -> 94B 93B -> 94B</s**2>	2:	2.032-A 0.10671 0.64399 0.23117 -0.46408 0.49971 0.12226	2.6971	eV	459.70	nm	f=0.0065
Excited State <s**2>=0.799 94A -> 95A 94A -> 98A 85B -> 94B 88B -> 94B 89B -> 94B 93B -> 94B</s**2>	3:	2.048-A 0.58590 0.11810 -0.12231 -0.31742 0.66839 0.20594	2.8305	eV	438.03	nm	f=0.0163
Excited State <s**2>=0.901 94A ->100A 92B -> 94B</s**2>	4:	2.146-A 0.12259 0.96306	2.8444	eV	435.89	nm	f=0.0662
Excited State <s**2>=0.815 94A -> 95A 88B -> 94B 89B -> 94B 91B -> 94B</s**2>	5 :	2.064-A -0.38069 -0.13710 0.31769 0.83526	3.2023	eV	387.17	nm	f=0.0270
Excited State <s**2>=2.564 90A -> 99A 91A -> 95A 93A -> 95A 90B -> 94B 90B -> 99B 91B -> 95B 91B -> 98B 92B -> 94B 93B -> 95B</s**2>	6 :	3.355-A 0.25045 0.42587 -0.37588 -0.27428 -0.25032 -0.38194 0.10711 0.13578 0.48863	3.4106	eV	363.53	nm	f=0.0022
Excited State <s**2>=0.981 91A -> 95A 93A -> 95A 90B -> 94B 93B -> 95B</s**2>	7:	2.219-A 0.13400 -0.17211 0.94281 0.17690	3.6026	eV	344.15	nm	f=0.0077
Excited State <s**2>=0.858 94A -> 97A 88B -> 94B 89B -> 94B</s**2>	8:	2.106-A -0.22102 0.85845 0.41801	3.6306	eV	341.50	nm	f=0.0005
Excited State <s**2>=0.925 93A -> 97A</s**2>	9 :	2.168-A 0.13800	3.6765	eV	337.23	nm	f=0.0000

94A -> 96A 87B -> 94B		0.37840 0.89628				
Excited State <s**2>=1.869 87A -> 96A 88A -> 97A 89A -> 96A 92A -> 98A 93A ->100A 94A -> 97A 94A -> 97A 87B -> 97B 88B -> 97B 88B -> 96B 91B ->100B 92B -> 95B 92B -> 98B 93B -> 94B 93B -> 100B</s**2>	10:	2.912-A 0.11026 -0.20481 -0.18094 -0.14915 0.28189 0.17742 0.67521 -0.19961 0.18811 -0.11870 -0.13043 -0.25416 -0.14593 -0.23955	3.6845	eV	336.50 nm	f=0.1424
Excited State <s**2>=2.355 87A -> 97A 88A -> 96A 89A -> 97A 91A -> 95A 92A ->100A 93A -> 97A 93A -> 98A 94A -> 96A 94A -> 100A 87B -> 94B 87B -> 94B 87B -> 96B 88B -> 97B 90B -> 94B 91B -> 95B 91B -> 95B 91B -> 98B 92B -> 100B 93B -> 95B 93B -> 95B</s**2>	11:	3.228-A 0.13196 -0.24881 -0.20304 0.14309 -0.18980 0.10226 0.35554 0.12385 0.40154 -0.12879 -0.23356 0.21341 0.14176 -0.12592 -0.10652 -0.17742 -0.27207 -0.13518 -0.37362	3.7554	eV	330.15 nm	f=0.0212
Excited State <s**2>=1.378 92A -> 96A 93A -> 97A 93A -> 98A 94A -> 96A 87B -> 94B 92B -> 96B 93B -> 97B</s**2>	12:	2.552-A -0.10688 0.22825 -0.11100 0.78287 -0.40134 -0.21150 -0.22974	3.8387	eV	322.98 nm	f=0.0002
Excited State <s**2>=1.480 92A -> 97A 93A -> 96A 94A -> 97A 94A -> 98A</s**2>	13:	2.630-A -0.12087 0.29113 0.80047 -0.19538	3.8575	eV	321.41 nm	f=0.0101

88B 89B 91B 92B 93B	-> 9 -> 9 -> 9 -> 9 -> 9	94B 94B 96B 97B 96B		0.23352 0.11283 -0.10737 -0.22797 -0.27303					
Excited	Stat	te	14 :	3.329-A	4.1371	eV	299.69	nm	f=0.0003
86A 86A 90A 91A 91A 93A 93A 94A 94A 86B 90B 91B 91B 93B	-> 2 -> 2	95A 96A 99A 95A 95A 95A 95A 99A 00A 95B 99B 95B 98B 95B		$\begin{array}{c} -0.17456\\ -0.10436\\ -0.29561\\ -0.22621\\ 0.10673\\ -0.37736\\ -0.14761\\ 0.27314\\ 0.16924\\ 0.19115\\ 0.30116\\ 0.19732\\ -0.12535\\ 0.46443\end{array}$					
93B Excited <s**2>=1. 88A 89A 92A 93A 94A 94A 86B 87B 88B 91B 92B 93B</s**2>	Stat 194 -> 9 -> 9 -> 10 -> 9 -> 10 -> 9 -> 10 -> 9 -> 9 -> 10 -> 9 -> 9 -> 9 -> 10 -> 9 -> 9 -> 10 -> 9 -> 9 -> 9 -> 9 -> 9 -> 9 -> 9 -> 9	515 57A 56A 58A 500A 58A 500A 58A 501A 598B 596B 596B 596B 598B 500B	15:	2.403-A 0.14901 0.13235 0.17990 -0.17701 0.47027 0.21398 0.66468 0.16467 -0.15672 0.10711 0.15587 0.16829	4.1630	eV	297.83	nm	f=0.0471

12e

Excitation energies and oscillator strengths:

Excited State 1: 2.027-A 2.2583 eV 549.03 nm f=0.1173 <S**2>=0.777 98A -> 99A 0.22472 97B -> 98B 0.94086 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1314.99032916Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.031-A 2.6609 eV 465.95 nm f=0.0134 <S**2>=0.781 96A -> 99A -0.10842 98A -> 99A 0.78634 92B -> 98B -0.22082 93B -> 98B 0.22500

94B -> 98B 95B -> 98B 97B -> 98B		-0.19278 -0.38247 -0.19529			
Excited State	3:	2.077-A	2.8222 eV	439.31 nm	f=0.0323
<s**2>=0.828</s**2>					
98A -> 99A		0.33378			
89B -> 98B		0.11416			
92B -> 98B		0.43169			
93B -> 98B		-0.48079			
94B -> 98B		0.13677			
95B -> 98B		0.14385			
96B -> 98B		0.58899			
97B -> 98B		-0.14445			
Excited State	4 :	2.105-A	2.8250 eV	438.88 nm	f=0.0471
982 -> 992		-0 23698			
92B -> 98B		-0.33807			
93B -> 98B		0.37325			
94B -> 98B		-0.11173			
95B -> 98B		-0.13458			
96B -> 98B		0.76436			
97B -> 98B		0.10036			
Excited State <pre><s**2>=0.819</s**2></pre>	5 :	2.068-A	3.1958 eV	387.96 nm	f=0.0212
98A -> 99A		0.30976			
92B -> 98B		-0.21641			
93B -> 98B		0.26475			
95B -> 98B		0.86499			
Excited State <pre><s**2>=2.379</s**2></pre>	6 :	3.243-A	3.3878 eV	365.97 nm	f=0.0017
94A -> 99A		0.26654			
94A ->103A		0.14319			
95A -> 99A		0.28771			
95A ->103A		-0.14105			
96A -> 99A		-0.11139			
96A ->103A		0.11015			
97A -> 99A		-0.35299			
94B -> 98B		0.39976			
94B -> 99B		-0.15124			
94B ->103B		-0.17412			
95B -> 99B		-0.34260			
95B ->103B		0.13073			
96B -> 98B		0.12186			
97B -> 99B		0.45746			
Excited State	7 :	2.359-A	3.4930 eV	354.95 nm	f=0.0078
942 -> 007		-0.12547			
95A -> 99A		-0.1/756			
97A -> 99A		0.21575			
928 -> 98R		-0.10480			
93B -> 98B		0.14045			
94B -> 98B		0.85503			
95B -> 98B		-0.16017			

95B	-> 99B		0.14793					
978	-> 99B		-0.22925					
Excited	State	8:	2.090-A	3.6053	eV	343.90	nm	f=0.0003
<s**2>=0.</s**2>	842							
98A	->101A		0.14948					
98A	->102A		-0.12435					
92B	-> 98B		0.71144					
93B	-> 98B		0.65136					
Excited	State	9:	2.126-A	3.6547	eV	339.25	nm	f=0.0001
<s**2>=0.</s**2>	880							
97A	->101A		-0.10127					
98A	->100A		-0.29559					
91B	-> 98B		0.93001					
Excited	State	10:	2.906-A	3.6810	eV	336.82	nm	f=0.1408
<s**2>=1.</s**2>	862							
92A	->101A		0.17702					
93A	->100A		-0.18926					
96A	->102A		0.10779					
97A	->104A		0.28147					
98A	->101A		0.40776					
98A	->102A		0.563/9					
98A	->103A		0.11010					
91B 02B	->101B		-0.10012					
928	->100B		0.12117					
96B	-> 99B		0.11972					
96B	->102B		0.23003					
97B	-> 98B		0.14699					
97B	->104B		-0.24333					
Excited	State	11.	3.262-A	3.7538	ρV	330.29	nm	f=0.0217
<s**2>=2.</s**2>	410		5.202 11	5.7550	C •	550.25		1 0.0217
92A	->100A		0.24891					
93A	->101A		-0.18670					
93A	->102A		0.12317					
95A	-> 99A		0.11035					
96A	->104A		0.16810					
97A	->101A		0.22878					
97A	->102A		0.29091					
98A	->100A		0.11715					
98A	->104A		0.40244					
91B	->100B		-0.23307					
92B	->101B		0.17914					
93B	->101B		0.13245					
95B	-> 99B		-0.11663					
96B	-> 98B		-0.17252					
96B	->104B		0.27344					
9/B	-> 99B		-0.14348					
9/B 07p	->101B		-0.13010					
97B 97B	->102B		-0.33991					
ם ו נ	100D		-0.12204					
Excited	State	12:	2.592-A	3.8487	eV	322.15	nm	f=0.0004
<s**2>=1.</s**2>	429		0 10060					
96A	->100A		0.10800					

97A	->101A		0.18823					
97A	->102A		-0.18635					
98A	->100A		0.81225					
91B	-> 98B		0.31575					
96B	->100B		0.22246					
97B	->101B		-0.21536					
97B	->102B		0.13344					
Excited	State	13 :	2.662-A	3.8720	eV	320.21	nm	f=0.0091
<s**2>=1.</s**2>	521							
97A	->100A		0.29803					
98A	->101A		0.67425					
98A	->102A		-0.47934					
92B	-> 98B		-0.15908					
93B	-> 98B		-0.14280					
96B	->101B		0.21879					
97B	->100B		-0.27967					
Excited	State	14:	3.382-A	4.0915	eV	303.03	nm	f=0.0003
<s**2>=2.</s**2>	609							

12f

Excitation energies and oscillator strengths:

Excited State 1: 2.033-A 2.2961 eV 539.97 nm f=0.1305 <S**2>=0.783 98A -> 99A 0.15658 94B -> 98B 0.12507 97B -> 98B 0.94990 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1314.98383413 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	2.029-A	2.7284 eV	454.42 nm	f=0.0023
<s**2>=0.779</s**2>					
96A -> 99A		-0.11729			
98A -> 99A		0.72134			
98A ->105A		0.10230			
91B -> 98B		-0.11453			
92B -> 98B		-0.28260			
93B -> 98B		0.40126			
95B -> 98B		-0.38354			
Excited State	3:	2.060-A	2.8279 eV	438.42 nm	f=0.0233
<s**2>=0.811</s**2>					
98A -> 99A		-0.45876			
89B -> 98B		-0.12428			
91B -> 98B		-0.16042			
92B -> 98B		-0.38924			
93B -> 98B		0.54888			
94B -> 98B		-0.30983			
96B -> 98B		-0.33215			
97B -> 98B		0.19722			
Excited State	4:	2.119-A	2.8315 eV	437.87 nm	f=0.0575
<s**2>=0.872</s**2>					

98A -> 99A		-0.23438					
98A ->104A		-0.11195					
92B -> 98B		-0.12685					
93B -> 98B		0.16726					
94B -> 98B		-0.10672					
96B -> 98B		0.90499					
Excited State	5:	2.053-A	3.2378	eV	382.93	nm	f=0.0195
<s**2>=0.803</s**2>							
98A -> 99A		0.33504					
93B -> 98B		0.13894					
94B -> 98B		-0.22433					
95B -> 98B		0.87932					
	~	0 150 0	0 5106				C 0 0001
Excited State	6:	3.1/8-A	3.5196	ev	352.27	nm	f=0.0021
<\$**2>=2.2/6		0 00051					
94A -> 99A		0.28271					
94A ->103A		0.11675					
95A -> 99A		0.25777					
95A ->103A		-0.20932					
97A -> 99A		0.31977					
93B -> 98B		0.16652					
94B -> 98B		0.42562					
94B -> 99B		-0.19417					
94B ->101B		0.12377					
94B ->103B		-0.13464					
95B -> 98B		0.10073					
95B -> 99B		0.30509					
95B ->103B		-0.17782					
97B -> 99B		-0.41685					
Excited State	7:	2.421-A	3.5792	eV	346.40	nm	f=0.0043
<s**2>=1.216</s**2>							
94A -> 99A		-0.14695					
95A -> 99A		-0.15273					
97A -> 99A		-0.19487					
93B -> 98B		0.38513					
94B -> 98B		0.75191					
95B -> 98B		0 17755					
05B > 00B		0.16622					
		0 2/178					
976 - > 996		0.24170					
Excited State	8:	2.107-A	3.6082	eV	343.62	nm	f=0.0006
<s**2>=0.860</s**2>							
98A ->102A		-0.18122					
91B -> 98B		0.14184					
92B -> 98B		0.77842					
93B -> 98B		0.50754					
94B -> 98B		-0.18787					
Excited State	9:	2.151-A	3.6659	eV	338.21	nm	f=0.0001
<s**2>=0.906</s**2>							
98A ->100A		0.34860					
91B -> 98B		0.87961					
92B -> 98B		-0.21755					
Evaited Ctate	10-	2 0 0 2 7	2 6070	017	226 27		f=0 1/17
<pre>sxcrued State</pre>	TO:	2.902-A	3.00/0	ev	330.2/	11111	1-0.141/
2 2. 1.000							

91A 92A 93A 96A 97A 98A 98A 98A 98A 91B 91B 92B	->100A ->101A ->102A ->100A ->101A ->104A ->101A ->102A ->103A ->105A ->100B ->102B ->102B		$\begin{array}{c} 0.10451 \\ -0.10348 \\ 0.13697 \\ -0.15438 \\ 0.11197 \\ 0.28400 \\ 0.58042 \\ 0.33693 \\ 0.18565 \\ -0.11447 \\ 0.14989 \\ -0.10232 \\ 0.11656 \end{array}$					
96B	-> 99B		-0.13714					
96B	->101B		-0.18822					
96B	->102B		-0.10687					
96B	->103B		-0.12563					
97B	-> 98B		0.15077					
97B	->104B		-0.24832					
Excited <\$**2>=2.	State 386	11:	3.247-A	3.7562	eV	330.08	nm	f=0.0207
92A	->100A		-0.22596					
93A	->101A		-0.11649					
93A	->102A		0.18033					
95A	-> 99A		-0.11610					
96A	->104A		0.18608					
97A	->101A		0.30482					
97A	->102A		0.15626					
97A	->103A		0.11854					
98A	->100A		0.16675					
98A	->104A		0.39495					
91B	-> 98B		-0.12133					
91B	->100B		0.22188					
92B	->101B		0.11584					
92B	->102B		-0.15088					
93B	->102B		-0.11313					
95B	-> 99B		-0.12603					
96B	-> 98B		0.17178					
96B	->104B		-0.26867					
97B	-> 99B		-0.13547					
97B	->101B		-0.30167					
97B	->102B		-0.12855					
97B	->103B		-0.19250					
Excited	State	12:	2.575-A	3.8408	eV	322.81	nm	f=0.0020
	_>100		0 10500					
90A 077	_>100A		0 1709/					
97A 077	_>100A		_0 1009/					
9/A 007	->102A		-0.19004 0 78350					
90A 0 Q N	_>10/A		_0 11257					
01D	-> 00b		-0.35613					
91B	-/ yob		0.015042					
90B 07D	->100B		0 16462					
97B 97P	->100B		-0.10403 0 10525					
פונ	·		0.10020					

Excited	State	13:	2.654-A	3.8680	eV	320.54	nm	f=0.0108
<s**2>=1.</s**2>	510							
96A	->102A		0.10555					
97A	->100A		-0.21648					
97A	->102A		-0.17549					
98A	->101A		-0.42999					
98A	->102A		0.70421					
92B	-> 98B		0.19140					
93B	-> 98B		0.12452					
96B	->101B		0.10723					
96B	->102B		-0.19998					
97B	->100B		0.20544					
97B	->102B		0.18553					
Excited	State	14:	3.343-A	4.1249	eV	300.57	nm	f=0.0021
<s**2>=2.</s**2>	543							
90A	-> 99A		-0.17143					
92A	->100A		-0.12407					
94A	-> 99A		0.12476					
94A	->101A		-0.12227					
94A	->103A		0.15491					
95A	->103A		-0.26496					
97A	-> 99A		-0.40994					
97A	->105A		-0.14501					
98A	->101A		-0.15234					
98A	->103A		0.17049					
98A	->104A		0.19170					
90B	-> 99B		0.18847					
91B	->100B		0.13257					
94B	->101B		0.17904					
94B	->102B		0.10240					
94B	->103B		-0.17352					
95B	->103B		-0.21357					
97B	-> 99B		0.44705					
97B	->105B		0.17371					
Excited	State	15:	2.560-A	4.1464	eV	299.02	nm	f=0.0454
<s**2>=1.</s**2>	389							
92A	->102A		-0.12089					
93A	->100A		0.12349					
96A	->101A		-0.14441					
96A	->102A		-0.10390					
97A	-> 99A		-0.13628					
97A	->104A		-0.17245					
98A	-> 99A		-0.11612					
98A	->101A		0.48703					
98A	->102A		0.32555					
98A	->103A		-0.18476					
98A	->105A		0.25365					
90B	-> 98B		-0.41831					
91B	->100B		-0.10212					
92B	->102B		-0.13158					
96B	->101B		0.11474					
97B	-> 99B		0.10348					
97B	->104B		0.17457					

4. Archive data for DFT calculations.

CAM-B3LYP/6-31G(2d,p) geometries

12a

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C15H10F3N4O3(2)\PIOTR\25-Dec-2014\0\\#P B3LYP/6-31G(2d,p) TD(NStates=15) SCF=tight Geom(NoAngle noDistance, check) #P guess=check SCRF(solvent=1,4-Dioxane)\\Bis(4-h ydroxyphenyl)-3-CF3- oxoverdazyl\\0,2\0,0,-0.0041306748,-0.0194381643, 2.3653117448\C,0,-0.0041861472,-0.0048079307,1.1595516698\N,0,-1.17031 20527,0.0658713828,0.4007585621\N,0,-1.187591131,0.0712000601,-0.95249 66383\C,0,-0.0066618686,0.0278411175,-1.5218224826\N,0,1.1774095653,-0 .0276235742,-0.9521916081\N,0,1.1630355357,-0.0566221176,0.3992460054\ C,0,2.4529880317,-0.0436020788,1.0190116323\C,0,2.709508689,-0.7434216 78,2.1906750718\C,0,3.9826480973,-0.7232195664,2.7360374134\C,0,5.0037 62805,-0.013442303,2.1155950768\C,0,4.7449594434,0.6789868827,0.937255 1315\C,0,3.4755418118,0.6637753879,0.3940994624\C,0,-2.459371549,0.046 942701,1.022772346\C,0,-3.4838141424,-0.6541070067,0.3944721033\C,0,-4 .7519156481,-0.6738816515,0.9408099547\C,0,-5.0069199861,0.0072180656, 2.1265029284\C,0,-3.9836657787,0.710455887,2.7509123322\C,0,-2.7122411 764,0.7353540713,2.2017787293\H,0,3.2677256456,1.1902513679,-0.5278411 078\H,0,5.5497508236,1.2263783198,0.4625072305\H,0,4.1812180877,-1.270 5968797,3.6525716349\H,0,1.9209555998,-1.2939546937,2.6803697553\H,0,-1.9217876049,1.2804696936,2.6947383535\H,0,-4.1792912417,1.2487302712, 3.673453809\H,0,-5.5583052686,-1.216299278,0.4630794451\H,0,-3.2792829 53,-1.1722253376,-0.5329155424\0,0,-6.266472118,-0.0492208876,2.622835 2821\H,0,-6.3123698671,0.4606646173,3.4374705704\O,0,6.2646922291,0.03 88663711,2.6087493961\H,0,6.3133465545,-0.4790016455,3.4181814096\C,0, 0.0118700933,-0.0017588175,-3.0360346208\F,0,-1.1445194782,0.405369504 9,-3.5425372556\F,0,0.2404937435,-1.2420729775,-3.4769183254\F,0,0.979 2386504,0.7789630964,-3.5117477998\\Version=EM64L-G09RevD.01\State=2-A \HF=-1321.8058808\\$2=0.767602\\$2-1=0.\\$2A=0.750161\RMSD=9.875e-09\PG=C 01 [X(C15H10F3N4O3)]

12b

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C16H13N405(2)\PIOTR\25-De c-2014\0\\#P B3LYP/6-31G(2d,p) TD(NStates=15) SCF=tight Geom(NoAngle, noDistance, check) #P quess=check SCRF(solvent=1,4-Dioxane)\\1,5-bis(4 -hydroxyphenyl) 3-COOMe oxoverdazyl in dioxane\\0,2\0,0,-2.0934956221, 0.0211232236,1.1504821347\C,0,-3.2318618916,0.3984208733,1.2826949067\ N,0,-3.6808291253,1.6329129042,0.8213306806\N,0,-4.9562864368,2.065894 3665,0.9489836403\C,0,-5.7704082213,1.2455031803,1.5824256158\N,0,-5.4 900366498,0.0588270409,2.0843116447\N,0,-4.2176177663,-0.3599691857,1. 909584589\C,0,-3.9118541089,-1.6222910504,2.5127716493\C,0,-3.01120028 47,-2.5111557613,1.9405954646\C,0,-2.7715896586,-3.7321376941,2.549963 6384\C,0,-3.4303728947,-4.0751299579,3.7241703807\C,0,-4.339733687,-3. 1869466813,4.2884915477\C,0,-4.5774708122,-1.9675950081,3.6854285593\C ,0,-2.8199793193,2.5040733731,0.0805060133\C,0,-3.3700457789,3.2379031 164,-0.9660788873\C,0,-2.587111456,4.1158387536,-1.6896769972\C,0,-1.2 410528022,4.2670706299,-1.374267948\C,0,-0.6937990677,3.5376775381,-0. 3258751102\C,0,-1.4785775014,2.6598118565,0.4041991541\H,0,-5.29472105 79,-1.2768836379,4.1080300945\H,0,-4.8502886139,-3.4673909951,5.201447 748\H,0,-2.0660509706,-4.4249984069,2.1011354186\H,0,-2.4921032008,-2. 251460558,1.0310025416\H,0,-1.0447625947,2.0939916072,1.2143055101\H,0 ,-3.0023389022,4.6917584388,-2.5074628075\H,0,-4.4209832309,3.12310297 75,-1.1953310247\0,0,-3.2294191437,-5.2559885532,4.3594227654\H,0,-2.5 860876468,-5.7762177949,3.8684378694\0,0,-0.516154712,5.1373869266,-2. 1194624064\H,0,0.3918857005,5.1498641338,-1.8017493898\H,0,0.355070930 9,3.6566379855,-0.0710272403\C,0,-7.1920971751,1.6922756127,1.78568332 42\0,0,-7.9692040105,1.1271415382,2.5025691772\0,0,-7.4730442522,2.782 3728887,1.0747494759\C,0,-8.8040913975,3.2678422869,1.2360701604\H,0,-8.8755334733,4.1515531875,0.6046431541\H,0,-9.5269935051,2.5117077585, 0.9242018639\H,0,-8.9930327596,3.5245803764,2.2800499592\\Version=EM64 L-G09RevD.01\State=2-A\HF=-1212.649321\S2=0.769427\S2-1=0.\S2A=0.75018 \RMSD=9.078e-09\PG=C01 [X(C16H13N405)]\\

12c

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C18H13N4O3S1(2)\PIOTR\25-Dec-2014\0\\#P B3LYP/6-31G(2d,p) TD(NStates=15) SCF=tight Geom(NoAngle , noDistance, check) #P guess=check SCRF(solvent=1,4-Dioxane)\\1,5-Bis (4-HOphenyl)-3-thienyl oxoverdazyl in dioxane\\0,2\0,0,-2.0945915888,0 .0097732972,1.1535158293\C,0,-3.2365268786,0.3864569873,1.2761472253\N ,0,-3.6869843371,1.6151549021,0.8094897843\N,0,-4.9666685802,2.0413452 614,0.9237180032\C,0,-5.7980910341,1.2244655692,1.5490988843\N,0,-5.50 47545612,0.0380348158,2.058791907\N,0,-4.2231308851,-0.3695110745,1.89 87757885\C,0,-3.9080407375,-1.6219650134,2.5135326702\C,0,-3.037541237 3,-2.5276945036,1.9219078039\C,0,-2.7838741698,-3.7409576806,2.5406032 744\C,0,-3.3986417124,-4.0593213748,3.745479886\C,0,-4.2754431526,-3.1 534111708,4.3322483231\C,0,-4.525704006,-1.9414211549,3.7184229404\C,0 ,-2.8227474852,2.487215088,0.0753723827\C,0,-3.3564285005,3.2032245478 ,-0.9915503979\C,0,-2.5664440321,4.081260395,-1.7078787563\C,0,-1.2294 590584,4.2496745418,-1.3647019951\C,0,-0.6977994609,3.5366035841,-0.29 7135722\C,0,-1.4898752804,2.659033589,0.4251396909\H,0,-5.2118309689,-1.2328906486,4.1628679574\H,0,-4.7479851065,-3.4134314732,5.2714064709 \H,0,-2.1020225821,-4.4471390195,2.0761383563\H,0,-2.5517659768,-2.283 9541856,0.9893137512\H,0,-1.0689363425,2.1041437376,1.2496400673\H,0,-2.969280799,4.6434709357,-2.5412620452\H,0,-4.399698483,3.0727792341,-1.2460471251\C,0,-7.1809493782,1.6782045738,1.6915453871\C,0,-8.230153 4466,0.9966276986,2.2364349477\S,0,-7.6644015559,3.2439752442,1.142669 3614\C,0,-9.4388461806,1.7397330202,2.213515718\C,0,-9.2811678302,2.96 94404803,1.6515372431\H,0,-8.1255797022,-0.0035614321,2.6331697998\H,0 ,-10.3802921309,1.3706474484,2.5981388143\H,0,-10.0274797703,3.7356266 529,1.5060013174\0,0,-3.1832839641,-5.2325067957,4.3909036644\H,0,-2.5 616261784, -5.7644625928, 3.8848197664\0,0, -0.4965807323, 5.1194857984, -2 .1034000659\H,0,0.4038534186,5.1440339638,-1.7654904813\H,0,0.34434185 83,3.6681428635,-0.0215749073\\Version=EM64L-G09RevD.01\State=2-A\HF=-1536.5926318\S2=0.772552\S2-1=0.\S2A=0.750232\RMSD=4.558e-09\PG=C01 [X (C18H13N4O3S1)]\\

12d

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C20H15N403(2)\PIOTR\25-De c-2014\0\\#P B3LYP/6-31G(2d,p) TD(NStates=15) SCF=tight Geom(NoAngle, noDistance, check) #P guess=check SCRF(solvent=1,4-Dioxane)\\1,5-Bix-(4-hydroxyphenyl)-3 Ph oxoverdazyl, C2 symm in dioxane\\0,2\0,0,0.00060 16016,-0.002398624,2.3718315558\C,0,0.0005215482,-0.0018335773,1.16301 50171\N,0,-1.1593760486,0.0591697884,0.4014002553\N,0,-1.1777235639,0. 0426329097,-0.9522783183\C,0,0.0003423719,-0.0005651089,-1.5535019935\ N,0,1.178487429,-0.0443244096,-0.9524743767\N,0,1.1603184018,-0.062125 1951,0.4011904347\C,0,2.4485826929,-0.045374986,1.0223011101\C,0,2.707 4785348,-0.7559454847,2.1869007779\C,0,3.9786751361,-0.7336466578,2.73 7251526\C,0,4.9970191815,-0.0100558113,2.1288045011\C,0,4.7369236652,0 .6951358957,0.9588861078\C,0,3.4685171443,0.6774801109,0.4118163387\C, 0,0.0002443845,0.0001249406,-3.0358709837\C,0,1.1835131917,-0.21447730 94,-3.7398721875\C,0,1.1812223914,-0.2135109779,-5.1256509605\C,0,0.00 00598615,0.0014192458,-5.8228223657\C,0,-1.1810102286,0.2157020864,-5. 1252951389\C,0,-1.1831175239,0.2153813032,-3.7395158099\C,0,-2.4475585 216,0.0418359289,1.022664674\C,0,-3.4675737744,-0.6804443582,0.4116347 217\C,0,-4.7359077959,-0.6986154552,0.9588554032\C,0,-4.9958488541,0.0 054744336,2.1294714298\C,0,-3.9774246215,0.7284929872,2.7384642706\C,0 ,-2.7063006391,0.7513102647,2.1879667951\H,0,3.2579222587,1.2172878552 ,-0.5017156295\H,0,5.5389809783,1.255533914,0.4945499301\H,0,4.1778942 661,-1.289827527,3.6484877007\H,0,1.9195299351,-1.3153198431,2.6678938 451\H,0,-2.0994644128,0.3854413548,-3.1889798966\H,0,-2.1071883367,0.3 864619914,-5.6628647955\H,0,-0.0000120334,0.0019225989,-6.9072802389\H ,0,2.1073292785,-0.3837715229,-5.6635016658\H,0,2.0999329682,-0.385048 6429,-3.1896157638\H,0,-1.9182886805,1.3102322115,2.6693817932\H,0,-4. 1765233692,1.2838162555,3.6502496616\H,0,-5.5380262578,-1.2585765219,0 .4940979989\H,0,-3.2570995458,-1.2193920201,-0.5024325963\O,0,-6.25599 22108,-0.0490073597,2.6282484643\H,0,-6.302150464,0.4753543439,3.43352 45684\0,0,6.2572284981,0.0439565272,2.6274660611\H,0,6.3034939133,-0.4 811655548,3.432240399\\Version=EM64L-G09RevD.01\State=2-A\HF=-1215.838 0397\S2=0.771019\S2-1=0.\S2A=0.750206\RMSD=7.133e-09\PG=C01 [X(C20H15N 403)]\\

12e

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C20H14F1N4O3(2)\PIOTR\25-Dec-2014\0\\#P B3LYP/6-31G(2d,p) TD(NStates=15) SCF=tight Geom(NoAngle , noDistance, check) #P guess=check SCRF(solvent=1,4-Dioxane)\\1,5-Bis (4-hydroxyphenyl)-3-Ph-m-F oxoverdazyl, in dioxane\\0,2\0,0,0.00005934 61,-0.0036159412,2.3688341443\C,0,-0.000375998,-0.0033145072,1.1605763 091\N,0,-1.1613192991,0.058392099,0.3994392686\N,0,-1.1802524095,0.042 8213367,-0.9537248913\C,0,-0.0021926216,-0.0029282107,-1.5535587274\N, 0,1.176363003,-0.0490531267,-0.954733008\N,0,1.1596228439,-0.064630703 4,0.3983920933\C,0,2.4479701447,-0.0494976413,1.0197180316\C,0,2.70677 95052,-0.7679387343,2.1793326977\C,0,3.9775101957,-0.7474035474,2.7305 061863\C,0,4.99495195,-0.0176114589,2.1276282831\C,0,4.7345916119,0.69 5685669,0.9626020164\C,0,3.4665462484,0.6797012939,0.4147662365\C,0,-0 .002465574,-0.0020548349,-3.0362973759\C,0,1.192177292,-0.1791771686,-3.7294659056\C,0,1.1700620014,-0.1732628009,-5.1084787616\C,0,0.003680 8352,0.0016919764,-5.8291443102\C,0,-1.1810660307,0.1773440501,-5.1287 554974\C,0,-1.1904237123,0.1765157097,-3.7425469658\C,0,-2.4487679337, 0.044523679,1.0225043074\C,0,-3.4696678382,-0.6814432543,0.4176073683\ C,0,-4.7370822844,-0.6957511991,0.9670333984\C,0,-4.9948458243,0.01584 41869,2.1336845312\C,0,-3.9751220146,0.7422910438,2.7366360037\C,0,-2. 7050311917,0.7612084938,2.1838398777\H,0,3.2557963245,1.2259745586,-0. 4949700125\H,0,5.5360424929,1.2604103016,0.5025750089\H,0,4.17741569,-1.3094506105,3.6379632057\H,0,1.9193875212,-1.3319651434,2.6559649018\ H,0,-2.1130994072,0.3179198923,-3.1960686244\H,0,-2.1082716428,0.31849 9867,-5.6724332204\H,0,0.0385903415,-0.0018941987,-6.9114924287\H,0,2. 1252644911,-0.3228449419,-3.2020678662\H,0,-1.9159821587,1.3227703977, 2.6606034194\H,0,-4.1723473267,1.3031521033,3.6453864188\H,0,-5.540138 3584,-1.2585090166,0.5073368174\H,0,-3.2609392857,-1.22680089,-0.49313 28499\0,0,-6.2539278575,-0.0353164517,2.6345676472\H,0,-6.2991709421,0 .4933817287,3.4370837628\0,0,6.2543202178,0.0351339848,2.6274717998\H, 0,6.3018536,-0.4973529187,3.4273193489\F,0,2.3185451547,-0.3448935524, -5.7692346491\\Version=EM64L-G09RevD.01\State=2-A\HF=-1315.0733184\S2= 0.77104\S2-1=0.\S2A=0.750206\RMSD=4.059e-09\PG=C01 [X(C20H14F1N4O3)]

12f

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C20H14F1N4O3(2)\PIOTR\25-Dec-2014\0\\#P B3LYP/6-31G(2d,p) TD(NStates=15) SCF=tight Geom(NoAngle , noDistance, check) #P guess=check SCRF(solvent=1,4-Dioxane)\\1,5(4-h ydroxyphenyl) Ph-o-F oxoverdazyl, in dioxane\\0,2\0,0,0.0024922051,0.0 004239858,2.376046232\C,0,0.0142769645,-0.0095346635,1.167557234\N,0,-1.1419521723,0.0206968192,0.397040074\N,0,-1.1493369846,-0.0222638565, -0.9562994001\C,0,0.0373308184,-0.034417759,-1.5441405387\N,0,1.211762 7245,-0.0292188972,-0.9384666809\N,0,1.1814678753,-0.0504498118,0.4155 395931\C,0,2.4658533244,-0.004773873,1.045292347\C,0,2.723051409,-0.67 67480526,2.233192379\C,0,3.9903365577,-0.6262564095,2.7909589798\C,0,5 .0066657055,0.086826304,2.1674896775\C,0,4.7488123191,0.751157115,0.97 34838216\C,0,3.4850251224,0.7051416059,0.4179907812\C,0,0.0214843857,-0.0145128661,-3.0252524219\C,0,1.0191806631,-0.6003974427,-3.799489257 1\C,0,0.9882844677,-0.5697794846,-5.181559101\C,0,-0.0661191606,0.0571 853451,-5.8250277688\C,0,-1.0828551306,0.64145257,-5.0811958113\C,0,-1 .0346208344,0.6006820453,-3.6983437099\C,0,-2.4349197003,-0.0145725004 ,1.0078063137\C,0,-3.4397407732,-0.7514100034,0.3886071885\C,0,-4.7122 232091,-0.7870358535,0.9252846972\C,0,-4.9922003109,-0.0857462798,2.09 28934802\C,0,-3.9894037327,0.6525604663,2.709348504\C,0,-2.7139710178, 0.6928306975,2.1699227788\H,0,3.2786974428,1.2075265532,-0.5172242382\ H,0,5.5498313969,1.3012639599,0.4952754115\H,0,4.1874570334,-1.1524664 68,3.7202785538\H,0,1.9377903828,-1.2286946693,2.7263801028\H,0,-1.822 1056881,1.0487720728,-3.1054976035\H,0,-1.9115969674,1.1319610108,-5.5 777692199\H,0,-0.09306508,0.0853493048,-6.9084295614\H,0,-1.9385141076 ,1.2634102554,2.6577547961\H,0,-4.2040774268,1.2060355603,3.6187267814 \H,0,-5.5022542075,-1.3586448443,0.4540363541\H,0,-3.2142897814,-1.286 3177687,-0.5241621232\0,0,-6.2556186506,-0.1575998601,2.5811847305\H,0 ,-6.3155443784,0.366018063,3.3860259322\0,0,6.2627408969,0.1683256963, 2.6732790391\H,0,6.3082316568,-0.3329480665,3.4931460076\H,0,1.7932705 042,-1.0478345573,-5.7258826199\F,0,2.0327027282,-1.2374347528,-3.2176 86055\\Version=EM64L-G09RevD.01\State=2-A\HF=-1315.0682158\S2=0.769944 \S2-1=0.\S2A=0.75019\RMSD=4.171e-09\PG=C01 [X(C20H14F1N4O3)]\\

5. References

- M. Jasiński, J. S. Gerding, A. Jankowiak, K. Gębicki, J. Romański, K. Jastrzębska, A. Sivaramamoorthy, K. Mason, D. H. Evans, M. Celeda, P. Kaszyński, J. Org. Chem. 2013, 78, 7445-7454.
- [2] T. J. Donohoe, L. P. Fishlock, P. A. Procopiou, Org. Lett. 2008, 10, 285-288.