Supplementary Information

Synthesis of monofluoroalkenes through selective hydrodefluorination of gem-difluoroalkenes with Red-Al®

Jingjing Wu,a,c * Juan Xiao,b Wenpeng Daib and Song Caoib *

a School of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.
b Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China
c Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

*Corresponding author. Tel: +86-21-60877220; fax: +86-21-60877231; E-mail address: wujj@sit.edu.cn, scao@ecust.edu.cn

Table of contents

General experimental procedures P1

Preparation of 1,1-difluoroalkenes 1a–n and symmetrical gem-difluoroalkene 1o–q P1

General procedure for the synthesis of 2a–q P1

Spectral and analytical data of compounds 2a–q P2

References P8

1H, 13C, 19F NMR and HRMS (EI) spectra of compounds 2a–q P9
General experimental procedures

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. 1H NMR and 13C NMR spectra were recorded on a 400 spectrometer (400 MHz for 1H and 100 MHz for 13C NMR, respectively) using TMS as internal standard, The 19F NMR spectra were obtained using a 400 spectrometer (376 MHz). CDCl$_3$ was used as the NMR solvent in all cases. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

Preparation of 1,1-difluoroalkenes 1a–n and symmetrical gem-difluoroalkene 1o–q

The 1,1-difluoroalkenes (1a–n) were prepared according to the reported procedure. The symmetrical gem-difluoroalkene (1o–q) was prepared according to the Hu’s reported procedure.

General procedure for the synthesis of 2a–q

To a solution of gem-difluoroalkenes 1a–q (1.0 mmol) in CH$_2$Cl$_2$ (8 mL) was added dropwise sodium bis(2-methoxyethoxy)aluminumhydride (Red-Al®, a 70% w/w in toluene) (0.8 mL) at room temperature. The mixture was stirred at room temperature for 1 h under argon atmosphere (TLC). After the completion of reaction, the reaction was quenched with saturated ammonium chloride solution. The aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The residue was purified by flash column chromatography using n-hexane as eluent to afford the corresponding monofluoro reduction products 2a–q.
Spectral and analytical data of compounds 2a-q

(E/Z)-1-(2-Fluorovinyl)-4-methoxybenzene (2a, CAS: 26946-13-4):

![Chemical structure of 2a](image)

Colorless liquid. Yield of *E/Z*-2a: 80%, *E/Z* ratio: 93/7. The *E/Z* ratio was determined by 19F NMR spectroscopy and the same below. 1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.7 Hz, 2H, *Z*-isomer), 7.18−7.14 (m, 2H, both *E-* and *Z*-isomers), 7.09 (dd, 2J_H-F = 84.0 Hz, 3J_H-H = 11.3 Hz, 1H, *E*-isomer), 6.84 (d, J = 8.7 Hz, 2H, *E*-isomer), 6.58 (dd, 2J_H-F = 80.5 Hz, 3J_H-H = 7.9 Hz, 1H, *Z*-isomer), 6.34 (dd, 3J_H-F = 19.6 Hz, 3J_H-H = 11.3 Hz, 1H, *E*-isomer), 5.54 (dd, 3J_H-F = 45.2 Hz, 3J_H-H = 5.3 Hz, 1H, *Z*-isomer), 3.80 (s, 3H, *Z*-isomer), 3.79 (s, 3H, *E*-isomer) ppm; 13C NMR (100 MHz, CDCl3) for the major *E*-isomer: δ 159.3 (d, 5J_C-F = 1.8 Hz), 149.2 (d, 1J_C-F = 256.3 Hz), 127.5 (d, 4J_C-F = 3.0 Hz), 125.3 (d, 3J_C-F = 11.7 Hz), 114.5, 113.5 (d, 2J_C-F = 16.0 Hz), 55.5 ppm; 19F NMR (376 MHz, CDCl3): δ −125.4 (dd, 2J_F-H = 83.1 Hz, 3J_F-H = 45.3 Hz, 1F, *Z*-isomer), −132.7 (dd, 2J_F-H = 83.1 Hz, 3J_F-H = 19.6 Hz, 1F, *E*-isomer) ppm.

(E/Z)-5-(2-Fluorovinyl)benzo[d][1,3]dioxole (2b, CAS: 276244-89-4):

![Chemical structure of 2b](image)

Light yellow liquid. Yield of *E/Z*-2b: 77%, *E/Z* ratio: 94/6. 1H NMR (400 MHz, CDCl3): δ 7.10 (dd, 2J_H-F = 83.4 Hz, 3J_H-H = 11.3 Hz, 1H, *E*-isomer), 6.81−6.77 (m, 2H, both *E-* and *Z*-isomers), 6.73−6.70 (m, 1H, both *E-* and *Z*-isomers), 6.61 (dd, 2J_H-F = 83.4 Hz, 3J_H-H = 5.4 Hz, 1H, *Z*-isomer), 6.35 (dd, 3J_H-F = 19.3 Hz, 3J_H-H = 11.3 Hz, 1H, *E*-isomer), 5.98 (s, 2H, *Z*-isomer) 5.97 (s, 2H, *E*-isomer), 5.55 (dd, 3J_H-F = 44.5 Hz, 3J_H-H = 5.4 Hz, 1H, *Z*-isomer) ppm; 13C NMR (100 MHz, CDCl3) for the major *E*-isomer: δ 149.3 (d, 1J_C-F = 255.7 Hz), 149.2 (d, 1J_C-F = 255.7 Hz), 148.1 (d, 5J_C-F = 2.0 Hz), 126.6 (d, 3J_C-F = 11.8 Hz), 120.4 (d, 4J_C-F = 3.9 Hz), 113.7 (d, 2J_C-F = 16.7 Hz), 108.6, 105.8 (d, 5J_C-F = 2.2 Hz), 101.1 ppm; 19F NMR (376 MHz, CDCl3): δ −124.5 (dd, 2J_F-H = 83.0 Hz, 3J_F-H = 44.4 Hz, 1F, *Z*-isomer), −132.3 (dd, 2J_F-H = 83.4 Hz, 3J_F-H = 19.3 Hz, 1F, *E*-isomer) ppm.

(E/Z)-1-(Benzyloxy)-4-(2-fluorovinyl)benzene (2c):

![Chemical structure of 2c](image)

White solid. Yield of *E/Z*-2c: 85%, *E/Z* ratio: 95/5. 1H NMR (400 MHz, CDCl3): δ 7.51−7.38 (m, 5H, both *E-* and *Z*-isomers), 7.25−7.22 (m, 2H, both *E-* and *Z*-isomers), 7.15 (dd, 2J_H-F = 83.6 Hz, 3J_H-H = 11.3 Hz, 1H, *E*-isomer), 7.01−6.98 (m, 2H, both *E-* and *Z*-isomers), 6.66 (dd, 2J_H-F = 83.1 Hz, 3J_H-H = 5.3 Hz, 1H, *Z*-isomer), 6.42 (dd, 3J_H-F
\[\text{C} \text{DCl} \text{isomerI): calc. for C} \text{H}3 \text{F} \text{NN} \text{N} \text{S} \text{H}2 \text{C}1 \text{H} \text{E} \text{Z}(-1)-(2-Fluorovinyl)-4-methylbenzene \]

Light yellow solid. Yield of \(E/Z \text{-2d: 79%, E/Z ratio: 93/7.} \ 1^H \text{NMR (400 MHz, CDCl}_3 \text{): } \delta 7.14 \text{(dd, } J_{HH} = 83.2 \text{ Hz, } J_{HF} = 11.4 \text{ Hz, } 1H, E-isomer), 7.22-7.13 \text{(m, 4H, both } E- \text{ and } Z-isomers), 6.62 \text{(dd, } J_{HH} = 82.1 \text{ Hz, } J_{HF} = 5.4 \text{ Hz, } 1H, Z-isomer), 6.34 \text{(dd, } J_{HH} = 19.3 \text{ Hz, } J_{HF} = 11.4 \text{ Hz, } 1H, E-isomer), 5.55 \text{(dd, } J_{HH} = 44.8 \text{ Hz, } J_{HF} = 5.3 \text{ Hz, } 1H, Z-isomer), 2.47 \text{(s, } 3H, \text{ Z-isomer), 2.46 \text{(s, } 3H, \text{ E-isomer) ppm; } 1^C \text{NMR (100 MHz, CDCl}_3 \text{) for the major } E-isomer: } \delta 149.9 \text{(d, } J_{CF} = 258.9 \text{ Hz), 137.8 \text{(d, } J_{CF} = 2.2 \text{ Hz), 129.5 \text{(d, } J_{CF} = 11.9 \text{ Hz), 126.9, 126.5 \text{(d, } J_{CF} = 3.1 \text{ Hz), 113.4 \text{(d, } J_{CF} = 16.3 \text{ Hz), 15.8 ppm; } 1^F \text{NMR (376 MHz, CDCl}_3 \text{): } \delta -122.3 \text{(dd, } J_{HF} = 82.7 \text{ Hz, } J_{HH} = 44.8 \text{ Hz, } 1F, Z-isomer), -130.4 \text{(dd, } J_{HF} = 83.2 \text{ Hz, } J_{HH} = 19.2 \text{ Hz, } 1F, E-isomer) ppm. HRMS (E-isomer): calc. for C13H13FO [M]^+ 228.0950, found 228.0949. \quad (E/Z)-4-(2-Fluorovinyl)phenyl(methyl)sulfane (2d):}

\[\text{E} \text{Z}(-1)-(2-Fluorovinyl)-N,N-dimethylaniline (2e, CAS: 1259106-87-0) 5:\]

Light yellow solid. Yield of \(E/Z-2e: 85%, E/Z ratio: 89/11, mp 65.2-66.5 \text{ °C.} \ 1^H \text{NMR (400 MHz, CDCl}_3 \text{): } \delta 7.13-7.11 \text{(m, } 2H, \text{ both } E- \text{ and } Z-isomers), 7.07 \text{(dd, } J_{HH} = 84.5 \text{ Hz, } J_{HF} = 11.3 \text{ Hz, } 1H, E-isomers), 6.67-6.65 \text{(m, } 2H, \text{ both } E- \text{ and } Z-isomers), 6.31 \text{(dd, } J_{HH} = 20.1 \text{ Hz, } J_{HF} = 11.3 \text{ Hz, } 1H, E-isomers), 5.49 \text{(dd, } J_{HH} = 46.2 \text{ Hz, } J_{HF} = 5.2 \text{ Hz, } 1H, Z-isomers), 2.95 \text{(s, } 6H, \text{ Z-isomers), 2.94 \text{(s, } 6H, \text{ E-isomers)ppm; } 1^C \text{NMR (100 MHz, CDCl}_3 \text{) for the major } E-isomer: } \delta 150.0, 148.1 \text{(d, } J_{CF} = 253.8 \text{ Hz), 129.9 \text{(d, } J_{CF} = 7.0 \text{ Hz), 127.0 \text{(d, } J_{CF} = 2.9 \text{ Hz), 113.6 \text{(d, } J_{CF} = 15.8 \text{ Hz), 112.7, 40.5 ppm; } 1^F \text{NMR (376 MHz, CDCl}_3 \text{): } \delta -127.2 \text{(dd, } J_{HF} = 83.3 \text{ Hz, } J_{HH} = 46.1 \text{ Hz, } 1F, Z-isomers), -135.4 \text{(dd, } J_{HF} = 84.5 \text{ Hz, } J_{HH} = 20.1 \text{ Hz, } 1F, E-isomers) ppm. \quad (E/Z)-1-(2-Fluorovinyl)-4-methylbenzene (2f, CAS: 26928-21-2) 3:\]
Colorless oily liquid. Yield of E/Z-2f: 55%, E/Z ratio: 93/7. 1H NMR (400 MHz, CDCl3): δ7.19−7.14 (m, 4H, both E- and Z-isomers), δ 7.18 (dd, 2JH-F = 83.6 Hz, 3JH-H = 11.4 Hz, 1H, E-isomer), 6.66 (dd, 2JH-F = 82.9 Hz, 3JH-H = 5.4 Hz, 1H, Z-isomer), 6.41 (dd, 3JH-H = 19.5 Hz, 3JH-H = 11.4 Hz, 1H, E-isomer), 5.62 (dd, 2JH-F = 45.1 Hz, 3JH-H = 5.4 Hz, 1H, Z-isomer), 2.39 (s, 3H, Z-isomer), 2.37 (s, 3H, E-isomer) ppm; 13C NMR (100 MHz, CDCl3) for the major E-isomer: δ 149.7 (d, 1C-C = 257.7 Hz), 137.3 (d, 2JH-C = 2.1 Hz), 129.8 (d, 3JH-C = 11.7 Hz), 129.5, 126.1 (d, 4JH-C = 3.0 Hz), 113.7 (d, 2JH-C = 15.8 Hz), 21.2 ppm; 19F NMR (376 MHz, CDCl3): δ −123.3 (dd, 2JF-H = 82.9, 3JF-H = 45.2 Hz, 1F, Z-isomer), −131.3 (dd, 2JF-H = 83.6 Hz, 3JF-H = 19.5 Hz, 1F, E-isomer) ppm.

(E/Z)-1-(2-Fluorovinyl)-2,4-dimethylbenzene (2g):

Colorless oily liquid. Yield of E/Z-2g: 70%, E/Z ratio: 95/5. 1H NMR (400 MHz, CDCl3): δ7.19−7.17 (m, 1H, both E- and Z-isomers), 7.05−7.00 (m, 2H, both E- and Z-isomers), 7.02 (dd, 2JH-F = 84.5 Hz, 3JH-H = 11.2 Hz, 1H, E-isomers), 6.57 (dd, 3JH-H = 19.6 Hz, 3JH-H = 11.2 Hz, 1H, E-isomers), 5.78 (dd, 3JH-H = 44.5 Hz, 3JH-H = 5.4 Hz, 1H, Z-isomers), 2.36(s, 3H, both E- and Z-isomers), 2.32 (s, 3H, both E- and Z-isomers) ppm; 13C NMR (100 MHz, CDCl3) for the major E-isomer: δ 149.9 (d, 1C-C = 258.6 Hz), 137.5 (d, 2JH-C = 1.4 Hz), 135.7 (d, 4JH-C = 4.3 Hz), 131.2, 128.5 (d, 3JH-C = 11.2 Hz), 126.9, 126.0 (d, 5JH-C = 1.0 Hz), 111.9 (d, 2JH-C = 15.2 Hz), 21.0, 19.9 ppm; 19F NMR (376 MHz, CDCl3): δ −124.8 (dd, 2JF-H = 83.8 Hz, 3JF-H = 44.6 Hz, 1F, Z-isomers), −127.8 (dd, 2JF-H = 84.5 Hz, 3JF-H = 19.6 Hz, 1F, E-isomers) ppm. HRMS (EI): calc. for C10H11F [M]+ 150.0845, found 150.0846.

(E/Z)-4-(2-Fluorovinyl)-1,2-dimethoxybenzene (2h):

Light yellow oily liquid. Yield of E/Z-2h: 80%, E/Z ratio: 93/7. 1H NMR (400 MHz, CDCl3): δ 7.12 (dd, 2JH-F = 83.6 Hz, 3JH-H = 11.3 Hz, 1H, E-isomers), 6.86−6.77 (m, 3H, both E- and Z-isomers), 6.62 (dd, 2JH-F = 83.1 Hz, 3JH-H = 5.4 Hz, 1H, Z-isomers), 6.36 (dd, 3JH-H = 19.5 Hz, 3JH-H = 11.3 Hz, 1H, E-isomers), 5.56 (dd, 3JH-H = 45.0 Hz, 3JH-H = 5.3Hz, 1H, Z-isomers), 3.90 (s, 6H, E-isomers), 3.89 (s, 6H, E-isomers) ppm; 13C NMR (100 MHz, CDCl3) for the major E-isomer: δ 149.2, 149.1 (d, 1C-C = 257.0 Hz), 148.7 (d, 2JH-C = 1.9 Hz), 125.4 (d, 3JH-C = 11.8 Hz), 119.0 (d, 4JH-C = 3.5 Hz), 113.6 (d, 2JH-C = 16.2 Hz), 111.5, 109.0 (d, 4JH-C = 2.4 Hz), 55.9, 55.8 ppm; 19F NMR (376 MHz, CDCl3): δ −125.1 (dd, 2JF-H = 83.1 Hz, 3JF-H = 45.0 Hz, 1F, Z-isomers), −132.3 (dd, 2JF-H = 83.6 Hz, 3JF-H = 19.5 Hz, 1F, E-isomers) ppm. HRMS (EI): calc. for C10H11FO2 [M]+ 182.0743, found 182.0744.

(E/Z)-1-(2-Fluorovinyl)-2-methoxybenzene (2i, CAS: 95799-46-5)³:
Colorless oily liquid. Yield of E/Z-$2i$: 81%, E/Z ratio: 93/7. 1H NMR (400 MHz, CDCl$_3$): δ 7.44 (dd, 2J$_{H,F}$ = 86.3 Hz, 3J$_{H,H}$ = 11.2 Hz, 1H, E-isomers), 7.28−7.22 (m, 2H, both E- and Z-isomers), 6.98−6.92 (m, 2H, both E- and Z-isomers), 6.72 (dd, 2J$_{H,F}$ = 83.8 Hz, 3J$_{H,H}$ = 5.5 Hz, 1H, Z-isomers), 6.55 (dd, 1J$_{H,F}$ = 22.3 Hz, 3J$_{H,H}$ = 11.2 Hz, 1H, E-isomers), 6.11 (dd, 3J$_{H,H}$ = 46.4 Hz, 3J$_{H,H}$ = 5.5 Hz, 1H, Z-isomers), 3.91 (s, 3H, E-isomers), 3.88 (s, 3H, Z-isomers) ppm; 13C NMR (100 MHz, CDCl$_3$) for the major E-isomer: δ 156.8 (d, 1J$_{C,F}$ = 2.9 Hz), 151.6 (d, 1J$_{C,F}$ = 250.0 Hz), 128.5 (d, 4J$_{C,F}$ = 2.7 Hz), 128.3 (d, 5J$_{C,F}$ = 2.1 Hz), 121.6 (d, 3J$_{C,F}$ = 11.2 Hz), 120.7, 110.8, 110.5 (d, 2J$_{C,F}$ = 18.3 Hz), 55.3 ppm; 19F NMR (376 MHz, CDCl$_3$): δ −123.9 (dd, 2J$_{F,H}$ = 83.8 Hz, 3J$_{F,H}$ = 46.4 Hz, 1F, Z-isomers), −125.0 (dd, 2J$_{F,H}$ = 86.3 Hz, 3J$_{F,H}$ = 22.3 Hz, 1F, E-isomers) ppm.

(E/Z)-1-(tert-Butyl)-4-(2-fluorovinyl)benzene ($2j$):

Colorless oily liquid. Yield of E/Z-$2j$: 84%, E/Z ratio: 90/10. 1H NMR (400 MHz, CDCl$_3$): δ 7.34−7.32 (m, 2H, both E- and Z-isomers), 7.14 (dd, 2J$_{H,F}$ = 83.8 Hz, 3J$_{H,H}$ = 11.2 Hz, 1H, E-isomers), 7.19−7.17 (m, 2H, both E- and Z-isomers), 6.62 (dd, 2J$_{H,F}$ = 82.9 Hz, 3J$_{H,H}$ = 5.3 Hz, 1H, Z-isomers), 6.37 (dd, 1J$_{H,F}$ = 19.5 Hz, 3J$_{H,H}$ = 11.4 Hz, 1H, E-isomers), 5.58 (dd, 3J$_{H,H}$ = 45.1 Hz, 3J$_{H,H}$ = 5.3 Hz, 1H, Z-isomers), 1.32−1.31 (m, 9H, both E- and Z-isomers) ppm; 13C NMR (100 MHz, CDCl$_3$) for the major E-isomer: δ 150.6 (d, 1J$_{C,F}$ = 2.1 Hz), 149.8 (d, 1J$_{C,F}$ = 257.9 Hz), 129.8 (d, 3J$_{C,F}$ = 11.8 Hz), 125.9 (d, 4J$_{C,F}$ = 3.0 Hz), 125.7, 113.6 (d, 3J$_{C,F}$ = 15.7 Hz), 34.6, 31.3 ppm; 19F NMR (376 MHz, CDCl$_3$): δ −123.2 (dd, 2J$_{F,H}$ = 82.9 Hz, 3J$_{F,H}$ = 45.1 Hz, 1F, Z-isomers), −140.0 (dd, 2J$_{F,H}$ = 83.6 Hz, 3J$_{F,H}$ = 19.5 Hz, 1F, E-isomers) ppm. HRMS (EI): calc. for C$_{13}$H$_3$F [M]$^+$ 178.1158, found 178.1159.

(E/Z)-1-Chloro-4-(2-fluorovinyl)benzene ($2k$, CAS: 26928-23-4):

Colorless oily liquid. Yield of E/Z-$2k$: 70%, E/Z ratio: 95/5. 1H NMR (400 MHz, CDCl$_3$): δ 7.28−7.25 (m, 2H, both E- and Z-isomers), 7.17−7.15 (m, 2H, both E- and Z-isomers), 7.14 (dd, 2J$_{H,F}$ = 82.4 Hz, 3J$_{H,H}$ = 11.4 Hz, 1H, E-isomers), 6.65 (dd, 2J$_{H,F}$ = 82.5 Hz, 3J$_{H,H}$ = 5.4 Hz, 1H, Z-isomers), 6.34 (dd, 1J$_{H,F}$ = 19.0 Hz, 3J$_{H,H}$ = 11.4 Hz, 1H, E-isomers); 5.57 (dd, 3J$_{H,H}$ = 44.2 Hz, 3J$_{H,H}$ = 5.4 Hz, 1H, Z-isomers) ppm; 13C NMR (100 MHz, CDCl$_3$) for the major E-isomer: δ 150.4 (d, 1J$_{C,F}$ = 260.4 Hz), 133.2 (d, 3J$_{C,F}$ = 2.2 Hz), 129.0, 131.2 (d, 3J$_{C,F}$ = 12.1 Hz), 127.4 (d, 4J$_{C,F}$ = 3.1 Hz), 113.0 (d, 2J$_{C,F}$ = 16.6 Hz) ppm; 19F NMR (376 MHz, CDCl$_3$): δ −121.3 (dd, 2J$_{F,H}$ = 186.4 Hz).
(E/Z)-1-Bromo-3-(2-fluorovinyl)benzene (2l):

\[
\begin{array}{c}
\text{Br} \\
\text{2l}
\end{array}
\]

Colorless oily liquid. Yield of E/Z-2l: 65%, E/Z ratio: 92/8. \(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.43–7.40 (m, 2H, both E- and Z-isomers), 7.21–7.19 (m, 2H, both E- and Z-isomers), 7.18 (dd, \(^1J_{H\text{-}F} = 82.4\) Hz, \(^2J_{H\text{-}H} = 11.4\) Hz, 1H, E-isomer), 6.70 (dd, \(^2J_{H\text{-}F} = 82.2\) Hz, \(^3J_{H\text{-}H} = 5.4\) Hz, 1H, Z-isomer), 6.36 (dd, \(^2J_{H\text{-}F} = 18.7\) Hz, \(^3J_{H\text{-}H} = 11.4\) Hz, 1H, E-isomer), 5.59 (dd, \(^3J_{H\text{-}F} = 43.8\) Hz, \(^4J_{H\text{-}H} = 5.4\) Hz, 1H, Z-isomer) ppm; \(^13C\) NMR (100 MHz, CDCl\(_3\)) for the major E-isomer: \(\delta\) 150.9 (d, \(^1J_{C\text{-}F} = 261.7\) Hz), 134.9 (d, \(^2J_{C\text{-}F} = 12.2\) Hz), 130.5 (d, \(^3J_{C\text{-}F} = 2.0\) Hz), 130.4, 129.1 (d, \(^4J_{C\text{-}F} = 3.0\) Hz), 124.8, 122.9, 112.9 (d, \(^5J_{C\text{-}F} = 16.8\) Hz ppm); \(^19F\) NMR (376 MHz, CDCl\(_3\)): \(\delta\) −119.90 (dd, \(^2J_{F\text{-}H} = 82.2\) Hz, \(^3J_{F\text{-}H} = 43.8\) Hz, 1F, Z-isomer), −127.24 (dd, \(^2J_{F\text{-}H} = 82.7\) Hz, \(^3J_{F\text{-}H} = 18.8\) Hz, 1F, E-isomer) ppm.

HRMS (EI): calc. for C\(_8\)H\(_6\)BrF [M]+ 201.9615, found 201.9615.

(E/Z)-1-(2-fluorovinyl)naphthalene (2m, CAS: 1236300-50-7) \(^2\):

\[
\begin{array}{c}
\text{F} \\
\text{2m}
\end{array}
\]

Colorless oily liquid. Yield of E/Z-2m: 83%, E/Z ratio: 90/10. \(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.00–7.97 (m, 1H, both E- and Z-isomers), 7.85–7.77 (m, 2H, both E- and Z-isomers), 7.54–7.48 (m, 2H, both E- and Z-isomers), 7.43–7.38 (m, 2H, both E- and Z-isomers), 7.07 (dd, \(^2J_{H\text{-}F} = 86.0\) Hz, \(^3J_{H\text{-}H} = 11.1\) Hz, 1H, E-isomer), 7.05 (dd, \(^3J_{H\text{-}F} = 15.9\) Hz, \(^4J_{H\text{-}H} = 11.1\)Hz, 1H, E-isomer), 6.87 (dd, \(^4J_{H\text{-}F} = 83.2\) Hz, \(^5J_{H\text{-}H} = 5.5\) Hz, 1H, Z-isomer), 6.29 (dd, \(^3J_{H\text{-}F} = 42.6\) Hz, \(^4J_{H\text{-}H} = 5.5\) Hz, 1H, Z-isomer) ppm; \(^13C\) NMR (100 MHz, CDCl\(_3\)) for the major E-isomer: \(\delta\) 151.0 (d, \(^1J_{C\text{-}F} = 262.1\) Hz), 134.0, 131.9 (d, \(^2J_{C\text{-}F} = 3.4\) Hz), 129.9 (d, \(^3J_{C\text{-}F} = 11.6\) Hz), 128.8, 128.6, 126.6, 126.4, 125.8, 124.7 (d, \(^4J_{C\text{-}F} = 1.5\) Hz), 124.3, 111.7 (d, \(^5J_{C\text{-}F} = 15.3\) Hz ppm); \(^19F\) NMR (376 MHz, CDCl\(_3\)): \(\delta\) −123.2 (dd, \(^2J_{F\text{-}H} = 83.4\) Hz, \(^3J_{F\text{-}H} = 42.5\) Hz, 1F, Z-isomer), −123.6 (dd, \(^2J_{F\text{-}H} = 85.1\) Hz, \(^3J_{F\text{-}H} = 16.0\) Hz, 1F, E-isomer) ppm.

(E/Z)-4-(2-Fluorovinyl)-1,1′-biphenyl (2n, CAS: 123133-22-2) \(^6\):

\[
\begin{array}{c}
\text{F} \\
\text{2n}
\end{array}
\]

White solid. Yield of E/Z-2n: 91%, E/Z ratio: 92/8, mp 113.8–117.2 °C. \(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.58–7.52 (m, 4H, both E- and Z-isomers), 7.44–7.41 (m, 2H, both E- and Z-isomers), 7.35–7.29 (m, 3H, both E- and Z-isomers), 7.20 (dd, \(^2J_{H\text{-}F} = 82.4\) Hz, \(^3J_{H\text{-}H} = 11.4\) Hz, 1H, E-isomers), 6.66 (dd, \(^2J_{H\text{-}F} = 82.6\) Hz, \(^3J_{H\text{-}H} = 5.3\) Hz, 1H, Z-isomers), 6.41 (dd, \(^3J_{H\text{-}F} = 19.3\) Hz, \(^4J_{H\text{-}H} = 11.4\) Hz, 1H, E-isomers), 5.64 (dd, \(^3J_{H\text{-}F} = 44.8\) Hz, \(^4J_{H\text{-}H} = 5.3\) Hz, 1H, E-isomers) ppm.
Hz, 1H, Z-isomers) ppm; 13C NMR (100 MHz, CDCl$_3$) for the major E-isomer: δ 150.3 (d, $^1J_{C\text{-}F}$ = 259.4 Hz), 140.6, 140.4 (d, $^4J_{C\text{-}F}$ = 2.1 Hz), 131.7 (d, $^3J_{C\text{-}F}$ = 11.8 Hz), 128.9, 127.5, 127.4, 127.0, 126.6 (d, $^5J_{C\text{-}F}$ = 3.0 Hz), 113.6 (d, $^2J_{C\text{-}F}$ = 16.1 Hz) ppm; 19F NMR (376 MHz, CDCl$_3$): δ -121.6 (dd, $^2J_{F\text{-}H}$ = 82.7 Hz, $^3J_{F\text{-}H}$ = 44.9 Hz, 1F, Z-isomers), -129.4 (dd, $^2J_{F\text{-}H}$ = 83.2 Hz, $^3J_{F\text{-}H}$ = 19.3 Hz, 1F, E-isomers) ppm.

(2-Fluoroethene-1,1-diyl)dibenzene (2o, CAS: 390-75-0) 6:

\[
\begin{array}{c}
\text{F} \\
\text{H} \\
\text{2o}
\end{array}
\]

Colorless oily liquid. Yield of 2o: 80%. 1H NMR (400 MHz, CDCl$_3$): δ 7.42−7.29 (m, 10H), 7.02 (d, $^2J_{H\text{-}F}$ = 83.4 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 145.9 (d, $^1J_{C\text{-}F}$ = 268.6 Hz), 137.0 (d, $^3J_{C\text{-}F}$ = 8.1 Hz), 135.2, 129.8 (d, $^4J_{C\text{-}F}$ = 4.0 Hz), 128.7 (d, $^6J_{C\text{-}F}$ = 3.2 Hz), 128.4 (d, $^2J_{C\text{-}F}$ = 29.4 Hz), 127.8 (d, $^5J_{C\text{-}F}$ = 3.9 Hz), 126.3 (d, $^4J_{C\text{-}F}$ = 5.6 Hz) ppm; 19F NMR (376 M Hz, CDCl$_3$): δ -128.0 (d, $^2J_{F\text{-}H}$ = 83.4 Hz) ppm.

4,4'-{(2-Fluoroethene-1,1-diyl)bis(methylbenzene) (2p, CAS: 26551-47-3) 5:

\[
\begin{array}{c}
\text{F} \\
\text{H} \\
\text{2p}
\end{array}
\]

White solid. Yield of 2p: 78%, mp 89.4−91.3 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.25−7.12 (m, 8H), 6.90 (d, $^2J_{H\text{-}F}$ = 83.9 Hz, 1H), 2.35 (s, 6H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 145.3 (d, $^1J_{C\text{-}F}$ = 267.3 Hz), 137.6 (d, $^4J_{C\text{-}F}$ = 5.5 Hz), 134.3 (d, $^3J_{C\text{-}F}$ = 8.1 Hz), 129.7 (d, $^5J_{C\text{-}F}$ = 4.3 Hz), 129.1 (d, $^2J_{C\text{-}F}$ = 28.5 Hz), 128.6 (d, $^6J_{C\text{-}F}$ = 3.1 Hz), 125.9 (d, $^4J_{C\text{-}F}$ = 5.5 Hz), 21.3 (d, $^2J_{C\text{-}F}$ = 11.3 Hz) ppm; 19F NMR (376 M Hz, CDCl$_3$): δ -129.3 (d, $^2J_{F\text{-}H}$ = 83.9 Hz) ppm.

4,4'-{(2-Fluoroethene-1,1-diyl)bis(bromobenzene) (2q, CAS: 1427-99-2) 7:

\[
\begin{array}{c}
\text{F} \\
\text{H} \\
\text{2q}
\end{array}
\]

White solid. Yield of 2q: 83%, mp 77.7−79.8 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.48−7.06 (m, 8H), 6.92 (d, $^2J_{H\text{-}F}$ = 82.4 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 146.1 (d, $^1J_{C\text{-}F}$ = 271.1 Hz), 135.4 (d, $^3J_{C\text{-}F}$ = 8.1 Hz), 133.5, 131.8 (d, $^4J_{C\text{-}F}$ = 29.2 Hz), 131.4 (d, $^4J_{C\text{-}F}$ = 4.4 Hz), 130.3 (d, $^5J_{C\text{-}F}$ = 3.1 Hz), 124.6 (d, $^4J_{C\text{-}F}$ = 6.0 Hz), 122.2 (d, $^2J_{C\text{-}F}$ = 11.9 Hz) ppm; 19F NMR (376 M Hz, CDCl$_3$): δ -125.6 (d, $^2J_{F\text{-}H}$ = 82.4 Hz) ppm.
References

1H, 13C, 19F NMR and HRMS (EI) spectra of compounds 2a-q

1H NMR spectra of \(\textsf{E/Z}-2\text{a}\)

13C NMR spectra of \(\textsf{E/Z}-2\text{a}\)
19F NMR spectra of E/Z-2a
1H NMR spectra of E/Z-$2b$

13C NMR spectra of E/Z-$2b$
19F NMR spectra of E/Z-2b
1H NMR spectra of E/Z-2c

13C NMR spectra of E/Z-2c
19F NMR spectra of E/Z-2c

HRMS (EI) spectra of E/Z-2c
1H NMR spectra of E/Z-2d

13C NMR spectra of E/Z-2d
19F NMR spectra of E/Z-2d

HRMS (EI) spectra of E/Z-2d
1H NMR spectra of E/Z-2e

13C NMR spectra of E/Z-2e
19F NMR spectra of $E/Z-2e$
1H NMR spectra of E/Z-2f

13C NMR spectra of E/Z-2f
19F NMR spectra of E/Z-2f
1H NMR spectra of E/Z-2g

13C NMR spectra of E/Z-2g
\(^{19}\text{F}\) NMR spectra of \(E/Z-2\text{g}\)

HRMS (EI) spectra of \(E/Z-2\text{g}\)
1H NMR spectra of E/Z-2h

13C NMR spectra of E/Z-2h
19F NMR spectra of E/Z-2h

HRMS (EI) spectra of E/Z-2h
1H NMR spectra of E/Z-2i

1C NMR spectra of E/Z-2i
^{19}F NMR spectra of E/Z-2i
1H NMR spectra of $E/Z-2j$

13C NMR spectra of $E/Z-2j$
19F NMR spectra of $E/Z-2j$

HRMS (EI) spectra of $E/Z-2j$
1H NMR spectra of E/Z-2k

13C NMR spectra of E/Z-2k
19F NMR spectra of E/Z-2k
1H NMR spectra of E/Z-2l

13C NMR spectra of E/Z-2l
19F NMR spectra of E/Z-21

HRMS (EI) spectra of E/Z-21
1H NMR spectra of E/Z-2m

13C NMR spectra of E/Z-2m
19F NMR spectra of E/Z-2m
1H NMR spectra of E/Z-2n

1C NMR spectra of E/Z-2n
19F NMR spectra of E/Z-2n
1H NMR spectra of E/Z-2o

13C NMR spectra of E/Z-2o
19F NMR spectra of E/Z-2o
1H NMR spectra of E/Z-2p

13C NMR spectra of E/Z-2p
19F NMR spectra of E/Z-2p
1H NMR spectra of E/Z-2q

13C NMR spectra of E/Z-2q
19F NMR spectra of E/Z-2q