Table of Contents

1. Crystallography data of Compound 10
2. Copies of 1H and 13C NMR Spectra
3. Copies of HRMS spectra
4. Copies of HPLC data

1. Crystallography data of Compound 10

![Compound 10](image)

<table>
<thead>
<tr>
<th>Identification code</th>
<th>shelxl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C26 H23 Cl N4 O</td>
</tr>
<tr>
<td>Formula weight</td>
<td>442.93</td>
</tr>
<tr>
<td>Temperature</td>
<td>113(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 8.1418(16)$ Å, $alpha = 90$ deg.</td>
</tr>
<tr>
<td></td>
<td>$b = 12.894(3)$ Å, $beta = 105.75(3)$ deg.</td>
</tr>
<tr>
<td></td>
<td>$c = 10.541(2)$ Å, $gamma = 90$ deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1065.1(4) Å3</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>2, 1.381 Mg/m3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.207 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>464</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.18 x 0.12 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.01 to 28.10 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-9<=h<=10, -16<=k<=16, -13<=l<=13</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>10819 / 4910 [R(int) = 0.0301]</td>
</tr>
<tr>
<td>Completeness to theta = 28.10</td>
<td>99.1 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9756 and 0.9598</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4910 / 4 / 296</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.043</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0312, wR2 = 0.0797</td>
</tr>
</tbody>
</table>
R indices (all data) R1 = 0.0414, wR2 = 0.0828
Absolute structure parameter -0.01(5)
Largest diff. peak and hole 0.209 and -0.296 eÅ^-3

2. Copies of 1H and 13C NMR Spectra
2. Copies of HRMS spectra

- **7a**

- **7b**
3. Copies of HPLC data

<Chromatogram>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.996</td>
<td>2218565</td>
<td>216367</td>
<td>53.760</td>
<td>49.977</td>
</tr>
<tr>
<td>2</td>
<td>6.089</td>
<td>2220565</td>
<td>188101</td>
<td>46.240</td>
<td>50.023</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4439129</td>
<td>402468</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.996</td>
<td>162028</td>
<td>14682</td>
<td>4.456</td>
<td>4.286</td>
</tr>
<tr>
<td>2</td>
<td>5.981</td>
<td>3622606</td>
<td>314788</td>
<td>95.544</td>
<td>95.714</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3784807</td>
<td>329470</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
<Chromatogram>

<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Conc.</th>
<th>Area/Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.927</td>
<td>50.419</td>
<td>9.289</td>
<td>55.405</td>
<td>50.419</td>
</tr>
<tr>
<td>2</td>
<td>6.349</td>
<td>49.581</td>
<td>11.349</td>
<td>44.595</td>
<td>49.581</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

<Chromatogram>

<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.916</td>
<td>79824</td>
<td>8600</td>
<td>0.728</td>
<td>0.938</td>
<td>0.728</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10959941</td>
<td>916591</td>
<td>100.000</td>
<td>100.000</td>
<td></td>
</tr>
</tbody>
</table>
<Peak Table>

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.887</td>
<td>3523325</td>
<td>349196</td>
<td>53.220</td>
<td>50.186</td>
</tr>
<tr>
<td>2</td>
<td>5.874</td>
<td>3467196</td>
<td>306946</td>
<td>46.780</td>
<td>49.814</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7020523</td>
<td>656142</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

<Peak Table>

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.831</td>
<td>555600</td>
<td>69806</td>
<td>10.571</td>
<td>9.012</td>
</tr>
<tr>
<td>2</td>
<td>5.580</td>
<td>5609729</td>
<td>590520</td>
<td>89.429</td>
<td>90.988</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6165328</td>
<td>660325</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.005</td>
<td>290322</td>
<td>24500</td>
<td>3.150</td>
<td>2.676</td>
</tr>
<tr>
<td>2</td>
<td>6.330</td>
<td>10559422</td>
<td>753205</td>
<td>96.850</td>
<td>97.324</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10849744</td>
<td>777705</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.005</td>
<td>1606230</td>
<td>166140</td>
<td>54.632</td>
<td>49.893</td>
</tr>
<tr>
<td>2</td>
<td>6.376</td>
<td>1613117</td>
<td>137969</td>
<td>45.368</td>
<td>50.107</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3219346</td>
<td>304109</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
<Chromatogram>

Detector A 254nm

<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.996</td>
<td>2218565</td>
<td>216367</td>
<td>53.760</td>
<td>49.977</td>
</tr>
<tr>
<td>2</td>
<td>6.089</td>
<td>2220565</td>
<td>186101</td>
<td>46.240</td>
<td>50.023</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4439129</td>
<td>402468</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

<Chromatogram>

Detector A 254nm

<Peak Table>

Detector A 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Height%</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.563</td>
<td>110469</td>
<td>11950</td>
<td>2.710</td>
<td>2.493</td>
</tr>
<tr>
<td>2</td>
<td>5.556</td>
<td>4321216</td>
<td>429080</td>
<td>97.290</td>
<td>97.507</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4431684</td>
<td>441030</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

43