3D porous hybrids of defect-rich MoS$_2$/graphene nanosheets with excellent electrochemical performance as anode materials for lithium ion batteries

Longsheng Zhang, Wei Fan, Weng Weei Tjiu, and Tianxi Liu*

Electronic Supplementary Information

Fig. S1 FESEM image of bulk MoS$_2$. The digital image (inset) shows the poor dispersibility of bulk MoS$_2$ in aqueous solution (3 mg mL$^{-1}$).

Fig. S2 FESEM images of dr-MoS$_2$ NSs (a) before and (b) after the thermal reduction process.

Fig. S3 TEM images of dr-MoS$_2$ NSs (a) before and (b) after the thermal reduction process.

Fig. S4 (a) TEM and (b) HRTEM images of df-MoS$_2$ NSs.

Fig. S5 FESEM images, corresponding EDX spectra and EDX mapping images of (a) dr-MoS$_2$/GNS (2:1), (b) dr-MoS$_2$/GNS (6:1) and (c) dr-MoS$_2$/GNS (10:1) hybrids.

Fig. S6 XRD patterns of dr-MoS$_2$ NSs before and after the thermal reduction process.

Fig. S7 (a) XPS survey spectrum and (b) high resolution C 1s spectrum of GO sheets.

Fig. S8 First three discharge and charge curves of GNS in the voltage range from 0.01 to 3.0 V at a current density of 0.1 A g$^{-1}$.

Fig. S9 Comparison of the cycling performance of dr-MoS$_2$ NSs, df-MoS$_2$ NSs and bulk MoS$_2$ at a current density of 0.1 A g$^{-1}$.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015
Fig. S1
Fig. S5
Fig. S6
Fig. S7
Fig. S8
Fig. S9