ASSOCIATED CONTENT Supporting Information for: Molecular Dynamics Simulation of Heterogeneous Nucleation on Nanotubes
Donguk Suh1*, Kenji Yasuoka1, and Xiao Cheng Zeng2

(a) In L1D1

(b) In L1D2

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015.
Fig. S1 Time evolution of inside growth (a) L1D1 (b) L1D2 (c) L2D1 and (d) L2D2.
(a) Out L1D1

(b) Out L1D2
Fig. S2 Time evolution of outside growth (a) L1D1 (b) L1D2 (c) L2D1 and (d) L2D2.
Fig. S3 Time evolution of inside and outside growth for S=2 (a) L1D1 (b) L1D2 (c) L2D1 and (d) L2D2.
(a) $S=10$ L1D1

(b) $S=10$ L1D2
Fig. S4 Time evolution of inside and outside growth for S=10 (a) L1D1 (b) L1D2 (c) L2D1 and (d) L2D2.
Fig. S5 Growth rates for all types of tubes, hollow and filled cylinders.
Fig. S6 Growth rates for the (a) hollow and (b) filled cylinders.
(a) Nucleation Rate (m^{-3} s^{-1})

(b) Nucleation Rate (m^{-3} s^{-1})

L1D1
- Tube
- Hollow
- Filled

L1D2
- Tube
- Hollow
- Filled
Fig. S7 Homogeneous nucleation rates for all types of the tube, hollow and filled cylinder.
Fig. S8 Different arrangement of the homogeneous nucleation rates for all types of the hollow and filled cylinder.