Morphology and properties of silica-based coatings with different functionalities for Fe$_3$O$_4$, ZnO and Al$_2$O$_3$ nanoparticles

D. Liu, A. M. Pourrahimi, L. K. H. Pallon, R. L. Andersson, M. S. Hedenqvist, U. W. Gedde, R. T. Olsson*

KTH-Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology SE-100 44 Stockholm, Sweden

Corresponding Author

Phone: 46 73 2701868. Fax: 46 8 7906036. E-mail address: rols@kth.se.
Fig. S1. Dynamic light scattering (DLS) of (a) uncoated Fe$_3$O$_4$ nanoparticles, (b) APTES coated Fe$_3$O$_4$ nanoparticles
Fig. S2. TEM images of functional silane coated Fe$_3$O$_4$ nanoparticles. (a)-(c) APTES coating with the ammonia hydroxide amount of 50, 85, 190 μL, respectively; (d)-(f) MTES coating with the ammonia hydroxide amount of 50, 85, 190 μL, respectively; (g)-(i) OTES coating with the ammonia hydroxide amount of 50, 85, 190 μL, respectively; (j)-(l) TEOS coating with the ammonia hydroxide amount of 50, 85, 190 μL respectively. All the scale bars in the TEM images are 20 nm.
Fig. S3. Fe₃O₄ nanoparticles coated the silane volume of 0.36 mL, (a) APTES, (b) MTMS, (c) OTES.
Fig. S4. SEM image and corresponding EDS of (a) OTES coated Fe$_3$O$_4$ nanoparticles; (b) TEOS coated Fe$_3$O$_4$ nanoparticles. Si/Fe ratio: 0.022 and 1.8 (average), respectively.