Extraction of Actinides by Tertiary Amines in Room Temperature Ionic Liquids: Evidence for Anion Exchange as a Major Process at High Acidity and Impact of Acid Nature

Seraj A. Ansaria, Prasanta K. Mohapatraa\textperiodcentered, V. Mazanb, Isabelle Billardb\textperiodcentered,c,d\textperiodcentered**

a: Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai- 400085, India; b: Institut Pluridisciplinaire Hubert Curien, DRS, Radiochemistry Group, CNRS and Strasbourg University, 23 rue du Loess, 67037 Strasbourg cedex 2, France
c: Univ. Grenoble Alpes, LEPMI, F-38000 Grenoble, France
d: CNRS, LEPMI, F-38000 Grenoble, France (c and d: present addresses)

ELECTRONIC SUPPLEMENTARY INFORMATION
1. NMR measurements

The mineral acids was DCl (35\(^\%\)). The internal standard used in 1H NMR was trisodium citrate dehydrate (Sigma--Aldrich, 99 \%) chosen because its protons are well separated from those of the studied IL cations. The standard used in 19F NMR was sodium trifluoroacetate (Alfa Aesar, 98 \%). 1-methyl-3-octylimidazolium chloride had a purity >97 \% (Aldrich) for the T1 measurements.

![Fig. S-1: NMR data on C\textsubscript{8}mim+ (closed circle) and Tf\textsubscript{2}N- (empty diamond)](image-url)
2. Titration data

Table 1: Acid uptake by pure IL

<table>
<thead>
<tr>
<th>Acid</th>
<th>C$_4$mimTf$_2$N</th>
<th>C$_6$mimTf$_2$N</th>
<th>C$_8$mimTf$_2$N</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>No solubilization</td>
<td>No solubilization</td>
<td>No solubilization</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>6% solubilization</td>
<td>6% solubilization</td>
<td>5% solubilization</td>
</tr>
</tbody>
</table>