Supporting Information

Bio-Ingredients Assisted Formation of Porous TiO$_2$ for Li-Ion Battery Electrodes

Yi-Chun Chang, Chih-Wei Peng, Po-Chin Chen, Chi-Young Lee, and Hsin-Tien Chiu*

Yi-Chun Chang, Chih-Wei Peng, Po-Chin Chen, Prof. Hsin-Tien Chiu
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
30010, R. O. C.
Fax: (886)-3-5723764
E-mail: htchiu@nctu.edu.tw

Prof. Chi-Young Lee
Department of Materials Science and Engineering, National Tsing Hua University,
Hsinchu, Taiwan 30013, R. O. C.
Figure S1. SEM image of the reference sample.

Figure S2. EDX result from the rectangular area in the TEM image of C-PT. The same image is displayed in Figure 4a in the main article also.

Figure S3. Raman spectrum of C-PT.

Figure S4. SEM image of C-PT.

Figure S5. XRD pattern of C-PT.

Figure S6. N$_2$ adsorption-desorption isotherms of sample C-PT. Inset: pore size distributions of the material.

Figure S7. Four continuous scans of cyclic voltammograms of (a) PT and (b) the reference sample.

Figure S8. Discharge/charge curves of anodes composed of (a) C-PT, (b) C-PT-2, (c) PT, and (d) the reference sample at 3 - 1 V versus Li$^+$/Li.

Figure S9. Rate capacities of C-PT at 5 C (1 C = 334 mAh/g) for 100 cycles.

Figure S10. (a) Impedance plots of the samples before cycling. (b) Plots of impedance as a function of the inversed square root of angular frequency in the Warburg region.

Figure S11. (a) Impedance plots of C-PT before and after discharge-charge cyclings. (b) Plots of impedance as a function of the inversed square root of angular frequency in the Warburg region.

Table S1. Summary of electrochemical properties of the anatase TiO$_2$ anode materials for Li-ion batteries. All cathodes are Li metal foils.

Table S2. Warburg factors (σ) and diffusion coefficients (D) (estimated from the equations S1 and S2 below) of Li ions in different anode samples.
Figure S1. SEM image of the reference sample.
Figure S2. EDX result from the rectangular area in the TEM image of C-PT. The same image is displayed in Figure 4a in the main article also.
Figure S3. Raman spectrum of C-PT.
Figure S4. SEM image of C-PT.
Figure S5. XRD pattern of C-PT.
Figure S6. N$_2$ adsorption-desorption isotherms of sample C-PT. Inset: pore size distributions of the material.
Figure S7. Four continuous scans of cyclic voltammograms of (a) PT and (b) the reference sample.
Figure S8. Discharge/charge curves of anodes composed of (a) C-PT, (b) C-PT-2, (c) PT, and (d) the reference sample at 3 - 1 V versus Li⁺/Li.
Figure S9. Rate capacities of C-PT at 5 C (1 C = 334 mAh/g) for 100 cycles.
Figure S10. (a) Impedance plots of the samples before cycling. (b) Plots of impedance as a function of the inversed square root of angular frequency in the Warburg region.
Figure S11. (a) Impedance plots of C-PT before and after discharge-charge cyclings. (b) Plots of impedance as a function of the inversed square root of angular frequency in the Warburg region.
Table S1. Summary of electrochemical properties of the anatase TiO$_2$ anode materials for Li-ion batteries. All cathodes are Li metal foils.

<table>
<thead>
<tr>
<th>TiO$_2$ Anode Materials</th>
<th>Morphology</th>
<th>Surface area (m2/g)</th>
<th>Performance</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Working Potential (V)</td>
<td>Cycling Rate (mA/g)</td>
</tr>
<tr>
<td>Anatase</td>
<td>Nanotube</td>
<td>400</td>
<td>1.2 - 3</td>
<td>4000</td>
</tr>
<tr>
<td>Anatase</td>
<td>Nanosheet</td>
<td>170</td>
<td>1 - 3</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3400</td>
</tr>
<tr>
<td>Anatase</td>
<td>Hollow sphere</td>
<td>135</td>
<td>1 - 3</td>
<td>1700</td>
</tr>
<tr>
<td>Anatase</td>
<td>Spindle-shaped</td>
<td>16</td>
<td>1 - 3</td>
<td>170</td>
</tr>
<tr>
<td>Anatase</td>
<td>Nanocage</td>
<td>64</td>
<td>1 - 3</td>
<td>85</td>
</tr>
<tr>
<td>Anatase</td>
<td>Porous</td>
<td>70</td>
<td>1 - 3</td>
<td>2000</td>
</tr>
<tr>
<td>Anatase</td>
<td>Micro sphere</td>
<td>118</td>
<td>1 - 3</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3400</td>
</tr>
<tr>
<td>Anatase/Rutile1</td>
<td>Micro sphere</td>
<td>54</td>
<td>1 - 3</td>
<td>5100</td>
</tr>
<tr>
<td>C/Anatase2</td>
<td>Mesoporous</td>
<td>120</td>
<td>1 - 3</td>
<td>170</td>
</tr>
<tr>
<td>N-doped C/Anatase3</td>
<td>Nanofiber</td>
<td>191</td>
<td>1 - 3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1650</td>
</tr>
<tr>
<td>C/Anatase2</td>
<td>Porous</td>
<td>53</td>
<td>1 - 3</td>
<td>1670</td>
</tr>
</tbody>
</table>
1. Mixed phases.
2. C-coated anatase.
3. N-doped C coated anatase.

Table S2. Warburg factors (σ) and diffusion coefficients (D) (estimated from the equations S1 and S2 below) of Li ions in different anode samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>σ (ohm cm2/s$^{0.5}$)</th>
<th>D (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>125.9</td>
<td>2.27*10$^{-13}$</td>
</tr>
<tr>
<td>C-PT</td>
<td>75.233</td>
<td>6.36*10$^{-13}$</td>
</tr>
<tr>
<td>Reference</td>
<td>508.82</td>
<td>1.39*10$^{-13}$</td>
</tr>
</tbody>
</table>

Derivation of Warburg factor

$$Z_{\text{real}} = R_e + R_{ct} + \sigma \omega^{-0.5} \quad (S1)$$

Z_{real}: Real resistance of the impedance response of the system

R_e: Resistance between the electrolyte and the electrode

R_{ct}: Charge transfer resistance

σ: Warburg factor in ohm cm2/s$^{0.5}$

ω: Angle frequency

Warburg diffusion equation

$$D = 0.5 \left(\frac{RT}{AF^2 \sigma C} \right)^2 \quad (S2)$$

D: Diffusion coefficient of Li$^+$ ions in the electrode

R: Gas constant, 8.314 J/mol K

T: Room temperature, 298 K

A: Surface area of the electrode

F: Faraday constant, 96486 C/mole

C: Molarity of Li$^+$ ions

σ: Warburg factor in ohm cm2/s$^{0.5}$