Supplementary Information

Unexpected Production of Singlet Oxygen by Sub-Micron Cerium Oxide Particles and Enhanced Photocatalytic Activity against Methyl Orange

C.R. Minitha¹, R. Pandian², S. Amirthapandian² and R.T. Rajendrakumar ¹,³*

¹Advanced Materials and Devices Laboratory (AMDL), Department of Physics, Bharathiar University, Coimbatore - 641 046, India
²Materials Physics Division, Indira Gandhi Center for Atomic Research, Kalpakkam, 603102, India.
³Department of Nanoscience and technology, Bharathiar University, Coimbatore - 641 046, India
a) Electronic mail: rtrkumar@buc.edu.in

I. Methyl orange dye degradation

FIG. S1. UV absorption spectrum of Methyl orange dye (15 ppm) with CeO₂ particles.
II. Production of Reactive oxygen Species

FIG S2. UV absorption spectrum of (a) FFA and (b) NBT for singlet oxygen and superoxide anion respectively with CeO$_2$ particles.
III. BET analysis of CeO$_2$ Particles

FIG S3. BET adsorption-desorption isotherms of C1 and C3.
FIG S4. HRTEM images of CeO$_2$ particles (a) C1, (b) C2 and (c) C3. Dotted rings: CeO$_2$ Particles of smaller than 10 nm.