Supporting Information

Poly(arylene ether ketone)s with Pendant Porphyrins: Synthesis and Investigation on Optical Limiting Properties

Yinlong Du,a Kai Zhu,a Yu Fang,b Shuling Zhang,a Xingrui Zhang,a Yaning Lu,a Yanchao Yang,a Yinglin Song,b and Guibin Wang*a

aCollege of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China
bCollege of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China

The nonlinear optical behavior of the polymers in THF were measured by using Z-scan technique under open-aperture and closed-aperture configuration with 4 ns pulsed laser irradiation at 532 nm with an intensity of 5.3 μJ. Theoretically, the nonlinear absorption coefficient β of the materials can be determined by the fitting of the experimental data based on equation (1).49

$$T(z, s=1) = \sum_{m=0}^{\infty} \left(\frac{q_0(z)}{z_0} \right)^m$$

Here $q_0(z) = \beta I_0(t)L_{eff}/(1+z^2/z_0^2)$, $I_0(t)$ is the intensity of laser beam at focus ($z = 0$), $L_{eff} = [1-\exp(-\alpha_0 L)]/\alpha_0$ is the effective thickness, α_0 is the linear absorption coefficient, L is the sample thickness, z_0 is the diffraction length of the beam, and z is the sample position. Thus, the nonlinear absorption coefficients of the polymers can be determined by fitting the experimental data with equation (1). The nonlinear refractive coefficients (n_2) of the polymers can be determined by fitting the experimental data using equation (2).49

$$T(z, \Delta \Phi) = 1 + 4\Delta \Phi \times (x^2 + 9)(x^2 + 1)$$

Where $x = z/z_0$ and $\Delta \Phi$ is on-axis phase change caused by the nonlinear refractive index of the sample and $\Delta \Phi = 2\pi I_0(1-e^{-\alpha L})n_2/\alpha_0$.

In accordance with the observed β and n_2 values, the third order susceptibility $\chi^{(3)}$ value can be calculated through the following equation:

$$|\chi^{(3)}| = \frac{10^{-6} c \varepsilon_0 n_0^2 \beta}{80\pi n_2}$$

Where ε_0 is the permittivity of vacuum, c is the speed of light, n_0 represents the refractive index of the medium, and $\varepsilon = 2\pi c/\lambda$. The calculated results of the nonlinear optical coefficients for all the samples in THF were summarized in Table 3.
Fig. S1 IR spectra of (a) PAEK-COOH30%-TPP (b) PAEK-COOH30%-TTP, and (c) PAEK-COOH50%-TNP.

Fig. S2 1H NMR spectra of (a) OH-TPP, (b) OH-TTP, and (c) OH-TNP.
Fig. S3 1H NMR spectra of (a) PAEK-COOH30%-TPP, (b) PAEK-COOH30%-ZnTPP, and (c) PAEK-COOH30%-PbTPP.

Fig. S4 EDS mapping photographs of (a) PAEK-COOH30%-ZnTPP and (b) PAEK-COOH30%-PbTPP. The red/green dots represented the position of Zn/Pb element.
Fig. S5 UV-vis absorption spectra of (a) PAEK-COOH30%, (b) PAEK-COOH30%-TPP, (c) PAEK-COOH30%-ZnTPP, (d) PAEK-COOH30%-PbTPP, (e) PAEK-COOH30%-TTP, and (f) PAEK-COOH30%-TNP.

Fig. S6 Normalized closed Z-scan curves of (a) PAEK-COOH30%-TPP, (b) PAEK-COOH30%-ZnTPP, and (c) PAEK-COOH30%-PbTPP.
Fig. S7 Optical limiting responses of PAEK-COOH10%-TPP, PAEK-COOH30%-TPP, and PAEK-COOH50%-TPP at the same concentration of 0.25 mg/mL at 532 nm in THF.