Electronic Supplementary Information

A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA

Shan Huanga, Lumin Wanga, Fawei Zhua, Wei Sua, Jiarong Shenga, Chusheng Huanga,

and Qi Xiaoa,b,*

a College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, P. R. China

b State Key Laboratory of Virology, Wuhan University, Wuhan 430072, P. R. China

* Corresponding author. Tel.: +86 771 3908065; Fax: +86 771 3908065; E-mail address: qi.xiao@whu.edu.cn
The relative QY of CDs was examined to be about 12.1% in reference to quinine sulfate whose QY was 54% in 0.1 M H$_2$SO$_4$ solution at 375 nm excitation.

Fig. S1. The relative QY of CDs.
The stability of the fluorescence of CDs.

The fluorescence stability of CDs were continuously examined by long-time monitoring of the fluorescent emission at room temperature, which indicated that the fluorescent intensity at 447 nm of CDs remained unchanged for nearly 25 days.

Fig. S2. The stability of the fluorescence of CDs.
The influence of pH value on CDs.

Fig. S3. The influence of pH value on CDs.

The fluorescence intensity of CDs decreased upon regulating pH value from 3 to 12, and the maximum emission wavelength gradually blue-shifted with increasing pH value, which indicated that the fluorescence property of CDs strongly depended on pH value.
As indicated in Fig. S4, when 300 μM EB was added into CDs solution, the fluorescence of CDs was quenched within 1 min of the contact time, which meant that the response rate was rapid. The fluorescence quenching reached a steady state during 2 min. A further increase in time did not lead to any further detectable quenching of the fluorescence of CDs. Thus, the fluorescence intensity of CDs–EB system was recorded after the addition of EB for 3 min.
The effect of addition sequence of reagents on CDs–EB–DNA reaction system.

Fig. S5. The effect of addition sequence of reagents on CDs–EB–DNA reaction system. (Up) Phosphate buffer, CDs, EB and DNA; (Down) Phosphate buffer, EB, DNA and CDs.

As shown in Fig. S5, different addition sequences could affect the fluorescence intensity of EB obviously, and the optimal addition sequence of this system was phosphate buffer, EB, DNA and CDs solution. At room temperature, the time dependent fluorescence of CDs–EB–DNA system was also investigated.
As shown in Fig. S6, the fluorescence of CDs was kept constant, and the fluorescence of EB was obviously increased by DNA within 5 min and almost lasted for more than 80 min. To ensure the consistency throughout the experiment and obtain stable signal, 10 min was chosen as the optimum incubation time for CDs–EB–DNA system.