Supplementary Information

Ishani Majumder, Prateeti Chakraborty, Sudhanshu Das, Hulya Kara, Shymal Kumar Chattopadhyay, Ennio Zangrando, and Debasis Das

aDepartment of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India
bDepartment of Physics, Faculty of Science and Art, Balikesir University, 10145 Balikesir, Turkey
cDepartment of Chemistry, IIEST Shibpur, Howrah, India
dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy

Figure S1. FTIR spectrum of complex 1.
Figure S2. 1H-NMR spectrum of ligand HL.
Figure S3. 13C-NMR spectrum of ligand HL.

Figure S4. FTIR spectrum of ligand HL.
Figure S5. UV-VIS spectrum of ligand HL in DMSO.
Figure S6. UV-VIS spectrum of Complex 1 in DMSO.
Figure S7. UV-VIS spectrum of Complex 1 in different pH at DMSO-buffer medium.
Figure S8. Spectrophotometric titration of 1 (pH value: 3.45-4.5; pKa = 4.10) Conditions: Complex = 10^{-3} [M]; [KCl] = 0.100 mol.L^{-1}; [KOH] = 0.100 mol.L^{-1}; in solution DMSO /water (75:25%v/v – 50 mL) at 25°C.

Table S1: pKa values of complex 1

<table>
<thead>
<tr>
<th>Complex</th>
<th>pKa[HL]</th>
<th>pKa[M-OH_{2}(1)]</th>
<th>pKa[M-OH_{2}(2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.1</td>
<td>6.1</td>
<td>8.15</td>
</tr>
</tbody>
</table>
Figure S9. ESI-MS spectrum of Complex 1 in DMSO-water medium.
Figure S10. PXRD pattern of complex 1.

Table S2. k_{cat} Value for Dinuclear Complex 1 for oxidation of 3,5 DTBC in DMSO.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Wavelength (nm)</th>
<th>V_{max} (M s$^{-1}$)</th>
<th>K_M (M)</th>
<th>k_{cat} (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>396</td>
<td>2.11×10^{-6}</td>
<td>2.2×10^{-3}</td>
<td>0.762×10^2</td>
</tr>
</tbody>
</table>
Figure S11. Change of d-d band of complex 1 during catecholase activity.
Figure S12. ESI-MS spectrum of complex –DTBC adduct after 1 hour of mixing.
Figure S13. Spectral scan to detect I^3^-.
Figure S14. Changes observed in UV–vis spectra of complex 1 up to 120 minutes (conc. 1×10^{-4} M) upon addition of 100-fold 3, 5-DTBC (1×10^{-2} M) in 50% DMSO-water mixture.
Figure S15. Changes observed in UV–vis spectra of complex 1 up to 120 minutes (conc. 1×10^{-4} M) upon addition of 100-fold 3, 5-DTBC (1×10^{-2} M) in 75% DMSO-water mixture.
Figure S16. Spectra of complex 1 in different percentage of water-DMSO medium.

Table S3. Kinetics Parameters for the Phosphatase Activity of Complex 1

<table>
<thead>
<tr>
<th>Complex</th>
<th>Wavelength (nm)</th>
<th>V_{max} (M s$^{-1}$)</th>
<th>K_M (M)</th>
<th>k_{cat} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>425</td>
<td>8.4904×10^{-5}</td>
<td>1.06×10^{-3}</td>
<td>1.69</td>
</tr>
</tbody>
</table>
Figure S17. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate:catalyst = 20:1) in 75% DMSO-buffer medium at pH 7.0 recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]=1 × 10^{-3}(M), [Complex] =0.05 × 10^{-3}(M). Arrow shows the change in absorbance with reaction time.
Figure S18. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate : catalyst = 20:1) in 75% DMSO-buffer medium at pH 7.5 recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]=1 × 10^{-3}(M), [Complex] =0.05 × 10^{-3}(M). Arrow shows the change in absorbance with reaction time.
Figure S19. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate: catalyst = 20:1) in 75% DMSO-buffer medium at pH 8.0 recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]=1 × 10^{-3}(M), [Complex] =0.05 × 10^{-3}(M). Arrow shows the change in absorbance with reaction time.
Figure S20. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate: catalyst = 20:1) in 75% DMSO-buffer medium at pH 8.5 recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP] = 1 × 10^{-3} (M), [Complex] = 0.05 × 10^{-3} (M). Arrow shows the change in absorbance with reaction time.
Figure S21. Wavelength scan for the hydrolysis of 4-NPP in the absence of complex 1 (substrate: catalyst = 20:1) in 75% DMSO-buffer medium at pH 9 recorded at 25°C at an interval of 10 minutes for 30 min. [4-NPP]=1 × 10^{-3} (M), [Complex] =0.05 × 10^{-3} (M). Arrow shows the change in absorbance with reaction time.
Figure S22. Wavelength scan for the hydrolysis of 4-NPP in the presence of Ligand HL (substrate:catalyst = 20:1) in 75% DMSO-buffer medium at pH 9 recorded at 25°C at an interval of 5 minutes for 30 mins. [4-NPP]=1 × 10⁻³(M), [Ligand]=0.05 × 10⁻³(M). Arrow shows negligible or no change in absorbance with reaction time.
Figure S23. Wavelength scan for the hydrolysis of 4-NPP in the presence of Cu(ClO$_4$)$_2$ (substrate:catalyst = 20:1) in 75% DMSO-buffer medium at pH 9 recorded at 25°C at an interval of 5 minutes for 30 mins. [4-NPP]=1 \times 10$^{-3}$M), [Ligand] =0.05 \times 10$^{-3}$(M). Arrow shows negligible or no change in absorbance with reaction time.
Figure S24. FTIR spectrum of Transformed ligand TL
Figure S25. 1HNMR spectrum of Transformed ligand TL
Figure S26. ESI-MS spectrum of reaction mixture in acetonitrile after 30 minutes of the addition of the ligand and Cu(ClO$_4$)$_2$.
Figure S27. ESI-MS spectrum of deformed ligand TL after purification.
Figure S28. Cyclic voltammogram of complex 1 at the GC electrode in DMSO medium at 100 mV s$^{-1}$ scan rate.
Figure S29. Cyclic voltammogram of complex 1 at the GC electrode in Acetonitrile medium at 100 mV s$^{-1}$ scan rate.
Figure S30. Cyclic voltammogram of complex 1 at the GC electrode in acetonitrile medium at 100 mVs\(^{-1}\) scan rate.
Figure S31. ORTEP drawing (ellipsoid probability 30%) of Cu(MeCN)$_4$(ClO$_4$) (All atoms are not labeled for sake of clarity).