Supplementary Information

Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: Effect of functionalization

Arun Singh Babal¹, Ravi Gupta¹, Bhanu Pratap Singh¹*, Sanjay R. Dhakate¹

Physics and Engineering of Carbon, CSIR-National Physical Laboratory, New Delhi, India-110012

Table S1: Storage modulus parameters of PC composite material

<table>
<thead>
<tr>
<th>S.No.</th>
<th>System</th>
<th>Storage Modulus E’ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40°C</td>
</tr>
<tr>
<td>1</td>
<td>Pure PC</td>
<td>1050</td>
</tr>
<tr>
<td>2</td>
<td>0.5 wt. % MWCNT/PC</td>
<td>1152</td>
</tr>
<tr>
<td>3</td>
<td>1 wt. % MWCNT/PC</td>
<td>1254</td>
</tr>
<tr>
<td>4</td>
<td>2 wt. % MWCNT/PC</td>
<td>1378</td>
</tr>
<tr>
<td>5</td>
<td>2 wt. % a-MWCNT/PC</td>
<td>1652</td>
</tr>
<tr>
<td>6</td>
<td>5 wt. % MWCNT/PC</td>
<td>1630</td>
</tr>
<tr>
<td>7</td>
<td>10 wt. % MWCNT/PC</td>
<td>1910</td>
</tr>
</tbody>
</table>

Table S2: Glass Transition Temperature parameters of composite material

<table>
<thead>
<tr>
<th>S.No.</th>
<th>System</th>
<th>Glass Transition Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Storage Modulus</td>
</tr>
<tr>
<td>1</td>
<td>Pure PC</td>
<td>145.30</td>
</tr>
<tr>
<td>2</td>
<td>0.5 wt. % MWCNT/PC</td>
<td>145.00</td>
</tr>
<tr>
<td>3</td>
<td>1 wt. % MWCNT/PC</td>
<td>144.50</td>
</tr>
<tr>
<td>4</td>
<td>2 wt. % MWCNT/PC</td>
<td>144.00</td>
</tr>
<tr>
<td>5</td>
<td>2 wt. % a-MWCNT/PC</td>
<td>143.70</td>
</tr>
<tr>
<td>6</td>
<td>5 wt. % MWCNT/PC</td>
<td>143.26</td>
</tr>
<tr>
<td>7</td>
<td>10 wt. % MWCNT/PC</td>
<td>141.90</td>
</tr>
</tbody>
</table>
Table S3: XRD peaks of as produced MWCNTs and acid modified MWCNTs

<table>
<thead>
<tr>
<th></th>
<th>As produced MWCNT (2θ)</th>
<th>Plane</th>
<th>C(002)</th>
<th>C(100)</th>
<th>C(101)</th>
<th>Fe(011)</th>
<th>C(110)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78 (minor hump)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid modified MWCNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2θ)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78 (minor hump)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(101)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe(011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(110)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>