Design, synthesis and biological evaluation of esculetin derivatives as anti-tumour agents

Ping Wang, Yang-Liu Xia, Guang-Bo Ge, Yang Yu, Jun-Xia Lu, Li-Wei Zou, Ling Yang*
Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. E-mail: ylingdicp@gmail.com.

Table of Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Experimental</td>
<td>S2</td>
</tr>
<tr>
<td>2. 1H NMR and 13C NMR spectra for compound 2</td>
<td>S2</td>
</tr>
<tr>
<td>3. 1H NMR spectra for compound 3</td>
<td>S3</td>
</tr>
<tr>
<td>4. 1H NMR and 13C NMR spectra for compound 4</td>
<td>S4</td>
</tr>
<tr>
<td>5. 1H NMR spectra for compound 5</td>
<td>S5</td>
</tr>
<tr>
<td>6. 1H NMR spectra for compound 6</td>
<td>S5</td>
</tr>
<tr>
<td>7. 1H NMR, 13C NMR, HSQC, HMBC and HRMS spectra for compound 8</td>
<td>S6</td>
</tr>
<tr>
<td>8. 1H NMR, 13C NMR, HSQC, HMBC and HRMS spectra for compound 9</td>
<td>S8</td>
</tr>
<tr>
<td>9. 1H NMR, 13C NMR and HRMS spectra for compound 10</td>
<td>S10</td>
</tr>
<tr>
<td>10. 1H NMR, 13C NMR and HRMS spectra for compound 11</td>
<td>S11</td>
</tr>
<tr>
<td>11. 1H NMR spectra for compound 12</td>
<td>S12</td>
</tr>
<tr>
<td>12. 1H NMR, 13C NMR and HRMS spectra for compound 13</td>
<td>S13</td>
</tr>
<tr>
<td>13. 1H NMR, 13C NMR and HRMS spectra for compound 14</td>
<td>S15</td>
</tr>
<tr>
<td>14. 1H NMR, 13C NMR and HRMS spectra for compound 15</td>
<td>S16</td>
</tr>
</tbody>
</table>
1. General Experimental

The 1H NMR and 13C NMR spectra were recorded in DMSO-d_6 using a Bruker ARX 400 spectrometer (400 MHz for 1HNMR and 100 MHz for 13CNMR), and chemical shifts were expressed as ppm against TMS as an internal reference. High-resolution mass spectral (HRMS) analyses were measured with Hybrid Ion Trap-Orbitrap Mass Spectrometer (LTQ Orbitrap XL, Thermo). A UFLC system (Shimadzu, Kyoto, Japan) with tandem mass spectrometry (2010EV), using electrospray ionization (ESI) interface and a computer equipped with UFLC-MS solution software (version 3.41; Shimadzu). All reagents used in the synthesis were obtained commercially and used without further purification. The reactions were monitored by thin layer chromatography (TLC) on glass-packed precoated silica gel GF$_{254}$ plates and visualized in an iodine chamber or with a UV lamp. Flash column chromatography was performed using silica gel (200–300 mesh) purchased from Qingdao Haiyang Chemical Co. Ltd.

2. 1H NMR and 13C NMR spectra for compound 2

1H NMR (400 MHz, DMSO-d_6)
3. ^{1}H NMR Spectra for compound 3

^{13}C NMR (100 MHz, DMSO-d_6)

^{1}H NMR (400 MHz, DMSO-d_6)
4. 1H NMR and 13C NMR Spectra for compound 4

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
5. 1H NMR Spectra for compound 5

1H NMR (400 MHz, DMSO-d_6)

6. 1H NMR spectra for compound 6

1H NMR (400 MHz, DMSO-d_6)
7. 1H NMR, 13C NMR, HSQC, HMBC and HRMS spectra for compound 8

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
8. 1H NMR, 13C NMR, HSQC, HMBC and HRMS spectra for compound 9

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
9. \(^1\)H NMR, \(^{13}\)C NMR and HRMS spectra for compound 10

\(^1\)H NMR (400 MHz, DMSO-\(d_6\))

\(^{13}\)C NMR (100 MHz, DMSO-\(d_6\))
10. 1H NMR spectra for compound 11

1H NMR (400 MHz, DMSO-d_6)
11. 1H NMR, 13C NMR and HRMS spectra for compound 12

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
12. 1H NMR, 13C NMR and HRMS spectra for compound 13

1H NMR (400 MHz, DMSO-d_6)
13C NMR (100 MHz, DMSO-d_6)

HRMS (ESI)
13. 1H NMR, 13C NMR and HRMS spectra for compound 14

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
14. 1H NMR, 13C NMR and HRMS spectra for compound 15

1H NMR (400 MHz, DMSO-d_6)