Electronic Supplementary Information

Influence of microwave hydrothermal reaction factor on morphology of NaY(MoO$_4$)$_2$ nano-/micro- structures and luminescence properties of NaY(MoO$_4$)$_2$·Tb$^{3+}$

Hui Zheng1,2, Baojiu Chen*1, Hongquan Yu*2, Jiashi Sun1, Xiangping Li1, Jinsu Zhang1, Hua Zhong1, Zhongli Wu1 and Haiping Xia3

1 Department of Physics, Dalian Maritime University, Dalian 116026, People’s Republic of China. Email: chenmbj@sohu.com
2 College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, People’s Republic of China. Email: yuhq7808@djtu.edu.cn
3 Key laboratory of Photo-electronic Materials, Ningbo University, Ningbo, 315211, People’s Republic of China. Email: hpxcm@nbu.edu.cn
Figure S1 HRTEM images of samples prepared with different Cit³⁻/MoO₄²⁻/Ln³⁺: (a) 0.5/2/1, (b) 1/2/1, (c) 1.5/2/1, (d) 2/2/1, (e) 1.5/3/1, (f) 2/4/1. Ln³⁺ represents 2 mmol lanthanide ions (1.9 mmol Y(NO₃)₃ and 0.1 mmol Tb(NO₃)₃). The insets are the morphology of these samples.
Figure S2 (a), (c), (e) Emission spectra ($\lambda_{ex}=281\text{ nm}$) and (b), (d), (f) fluorescent decays of the sample with $\text{Cit}^{3-}/\text{Ln}^{3+}$ molar ratio of 1, 1.5 and 2 at different temperatures.