Synthesis of Poly-functionalized Imidazoles via Vinyl Azides Participated Annulation

Jing Luo,† Wenteng Chen,† Jiaan Shao, Xingyu Liu, Ke Shu, Pai Tang, Yongping Yu*

Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Zijin Campus, Hangzhou 310058, China
† Jing Luo and Wenteng Chen contributed equally to this work.
* Corresponding author, E-mail: yyu@zju.edu.cn; Tel: +86-571-88208452.

Supporting Information
List of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>S2</td>
</tr>
<tr>
<td>General procedure for the Synthesis of 3</td>
<td>S2</td>
</tr>
<tr>
<td>Characterization Data of 3</td>
<td>S2-S8</td>
</tr>
<tr>
<td>X-ray Crystallography Data of 3g</td>
<td>S9</td>
</tr>
<tr>
<td>NMR spectra of 3</td>
<td>S10-S28</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015
General Information

All solvents were purified according to standard methods prior to use. Purifications of products were carried out by chromatography using silica gel (200-300 mesh). Melting points were recorded on a Büchi B-540 melting point apparatus. NMR spectra were recorded on a Bruker DRX-500 [Bruker Biospin, Germany] and Mercury plus Varian 300MHz. NMR spectra were recorded for 1H NMR at 500 MHz and for 13C NMR at 125 MHz. For 1H NMR, tetramethylsilane (TMS) served as internal standard ($\delta=0$) and data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constant(s) in Hz. For 13C NMR, TMS ($\delta=0$) or CDCl$_3$ ($\delta=77.26$) was used as internal standard and spectra were obtained with complete proton decoupling. HPLC analysis and the HRMS of all biologically evaluated compounds was confirmed on a Agilent 1290 HPLC-6224 Time of Flight Mass Spectrometer using PhenomenexLuna 5µ C18, 100 Å, 150 × 4.60 mm 5 micron column at a flow rate of 0.5 mL/min using liner gradients buffer B in A (B: CH$_3$OH containing 0.1 % formic acid, A: H$_2$O containing 0.1% formic acid). Mobile phase B was increased linearly from 5% to 95% over 7 min and 95% over the next 2 min, after which the column was equilibrated to 5% for 1 min.

The starting material 1 and 2 were prepared according to literature methods.1,2

References:

General Procedure for the Synthesis of 3

A mixture of vinyl azide 1 (0.1 mmol), imidate or thioamidium 2 (0.11 mmol, 1.1 equiv) was stirred in t-BuOH (1.0 mL) in a sealed tube at 110 °C for 8 h. After the completeness of the reaction, the mixture was cooled down to room temperature and diluted with water, extracted three times with EtOAc (3 × 10 mL). The combined organic extracts were washed with brine, dried over Na$_2$SO$_4$, concentrated and purified by flash chromatography (DCM/MeOH) on silica gel to afford 3.

Characterization Data

Ethyl 2, 4-diphenyl-1H-imidazole-5-carboxylate (3a)

Yellow solid, m.p. 158.9-159.1 °C; Yield: 269 mg (92%); 1H NMR (500 MHz, CDCl$_3$) δ10.43 (s, 1H), 7.97 (m, 4H), 7.48-7.36 (m, 6H), 4.33 (q, $J = 6.4$ Hz, 2H), 1.30 (t, $J = 6.4$ Hz, 3H); 13C NMR
(125 MHz, CDCl$_3$) δ 160.8, 148.1, 133.6, 130.0, 129.6, 129.2, 129.0, 128.7, 128.0, 126.3, 119.0, 61.2, 14.3. HRMS (ESI) calcd. for C$_{10}$H$_7$N$_2$O$_2$ [M+H]$^+$ = 293.1285, found 293.1285.

Ethyl 2-methyl-4-phenyl-1H-imidazole-5-carboxylate (3b)

![Chemical structure of 3b](image)

Yellow oil; Yield: 159 mg (69%); 1H NMR (500 MHz, CDCl$_3$) δ 7.59 (dd, $J = 7.7$, 1.7 Hz, 2H), 7.22-7.16 (m, 3H), 4.10 (q, $J = 7.1$ Hz, 2H), 2.09 (s, 3H), 1.07 (t, $J = 7.1$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 162.1, 146.4, 142.5, 131.5, 129.2, 128.3, 127.8, 122.0, 60.4, 14.0, 13.3. HRMS (ESI) calcd. for C$_{13}$H$_{15}$N$_2$O$_2$[M+H]$^+$ = 231.1128, found 231.1128.

Ethyl 4-(4-methoxyphenyl)-2-phenyl-1H-imidazole-5-carboxylate (3c):

![Chemical structure of 3c](image)

Yellow solid, m.p. 122.9-123.3 °C; Yield: 258 mg (80%); 1H NMR (500 MHz, CDCl$_3$) δ 10.18 (s, 1H), 7.97 (m, 3H), 7.48-7.36 (m, 6H), 4.35 (q, $J = 7.1$ Hz, 2H), 1.69 (s, 3H), 1.33 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 164.2, 162.1, 158.8, 138.0, 131.2, 126.4, 123.3, 121.8, 114.1, 112.2, 109.0, 93.7, 60.8, 55.4, 14.4. HRMS (ESI) calcd for C$_{19}$H$_{19}$N$_2$O$_3$ [M+H]$^+$ = 323.1390, found 323.1391.

Ethyl 4-(4-methoxyphenyl)-2-methyl-1H-imidazole-5-carboxylate (3d):

![Chemical structure of 3d](image)

Yellow oil; Yield: 177 mg (68%); 1H NMR (500 MHz, CDCl$_3$) δ 7.70 (d, $J = 8.7$ Hz, 2H), 6.88-6.83 (m, 2H), 4.24 (q, $J = 7.1$ Hz, 2H), 3.78 (s, 3H), 2.28 (s, 3H), 1.23 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.9, 159.9, 146.2, 130.6, 124.5, 113.4, 60.6, 55.4, 14.3, 13.9. HRMS (ESI) calcd. for C$_{14}$H$_{17}$N$_2$O$_3$[M+H]$^+$ = 261.1234, found 261.1234;
Ethyl 4-(benzo[d][1,3]dioxol-5-yl)-2-phenyl-1H-imidazole-5-carboxylate (3e):

Yellow solid, m.p. 202.5-202.8 °C; Yield: 221 mg (66%); ¹H NMR (500 MHz, CDCl₃) δ 10.01 (s, 1H), 7.95 (d, J = 6.8 Hz, 2H), 7.49-7.43 (m, 5H), 6.87 (d, J = 8.1 Hz, 1H), 6.00 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.1, 147.5, 123.0, 129.2, 129.1, 126.1, 123.8, 118.3, 110.2, 108.1, 101.3, 61.2, 14.5. HRMS (ESI) calcd. for C₁₉H₁₇N₂O₄ [M+H]+ = 337.1183, found 337.1184.

Ethyl 4-(4-bromophenyl)-2-phenyl-1H-imidazole-5-carboxylate (3f):

Yellow solid, m.p. 159.0-159.3 °C; Yield: 344 mg (93%); ¹H NMR (500 MHz, CDCl₃) δ 10.23 (s, 1H), 7.96 (d, J = 6.7 Hz, 2H), 7.88 (m, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 7.3 Hz, 3H), 4.36 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.0, 148.1, 132.0, 130.3, 130.1, 129.7, 129.1, 128.4, 126.0, 124.2, 123.5, 123.1, 61.5, 14.3. HRMS (ESI) calcd. for C₁₈H₁₆BrN₂O₂ [M+H]+ = 371.0390, found 371.0392.

Ethyl 4-(4-bromophenyl)-2-methyl-1H-imidazole-5-carboxylate (3g):

Yellow solid, m.p. 137.3-137.5 °C. Yield: 271 mg (88%); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.47-7.45 (m, 2H), 7.41-7.38 (m, 2H), 7.35-7.33 (m, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.15-7.13 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 5.11 (s, 2H), 3.73 (s, 2H), 3.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 158.3, 147.2, 146.0, 142.1, 136.8, 130.4, 130.0, 129.3, 128.9, 128.6, 128.0, 127.8, 127.7, 127.6, 127.4, 124.2, 119.1, 115.3, 70.0, 51.9. HRMS (ESI) calcd. for C₂₇H₂₃N₂O₅ [M+H]+ = 455.1601, found 455.1601.
Ethyl 4-(furan-2-yl)-2-phenyl-1H-imidazole-5-carboxylate (3i):

Yellow solid, m.p. 117.7-118.0 °C; Yield: 155 mg (55%); \(^{1}H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 10.19 (s, 1H), 7.98 (m, 3H), 7.44 (m, 5H), 4.35 (q, \(J = 7.1\) Hz, 2H), 1.33 (t, \(J = 7.1\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 160.4, 148.3, 147.7, 133.3, 129.9, 129.4, 129.0, 128.9, 128.5, 127.8, 126.0, 118.5, 61.1, 14.2. HRMS (ESI) calcd. for C\(_{16}\)H\(_{15}\)N\(_2\)O\(_3\) [M+H]\(^+\) 283.1077, found 283.1077.

2-Methyl-4-phenyl-1H-imidazole-5-carbaldehyde (3k):

Yellow solid, m.p. 164.9-165.2 °C; Yield: 52 mg (28%); \(^{1}H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 10.04 (s, 1H), 8.19-8.09 (m, 2H), 7.46-7.37 (m, 3H), 7.09 (s, 1H), 2.40 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 173.6, 161.2, 139.7, 134.1, 132.4, 130.6, 129.0, 128.0, 16.8. HRMS (ESI) calcd. for C\(_{11}\)H\(_{11}\)N\(_2\)O [M+H]\(^+\) = 187.0866, found 187.0866.

(4-Isopropyl-2-methyl-1H-imidazol-5-yl)(phenyl)methanone (3l):

Yellow solid, m.p. 95.8-96.2 °C; Yield: 217 mg (95%); \(^{1}H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.87 (s, 2H), 7.53 (t, \(J = 7.3\) Hz, 1H), 7.45 (t, \(J = 7.4\) Hz, 2H), 3.71 (d, \(J = 7.0\) Hz, 1H), 2.42 (s, 3H), 1.21 (d, \(J = 6.8\) Hz, 6H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 188.7, 145.8, 139.4, 132.0, 129.3, 128.2, 26.2, 22.3, 14.2. HRMS (ESI) calcd. for C\(_{14}\)H\(_{17}\)N\(_2\)O [M+H]\(^+\) = 229.1335, found 229.1337.

(2-Methyl-1H-imidazol-5-yl)(morpholino)methanone (3m):
Yellow solid, m.p. 174.1-174.3 °C; Yield: 176 mg (90%); 1H NMR (500 MHz, DMSO-d$_6$) δ 12.21 (s, 1H), 7.46 (s, 1H), 4.11 - 4.51 (m, 8H), 2.28 (s, 3H); 13C NMR (125 MHz, DMSO-d$_6$) δ 171.9, 162.3, 162.2, 144.3, 66.9, 22.9, 14.20. HRMS (ESI) calcd. for C$_9$H$_{14}$N$_3$O$_2$ [M+H]$^+$ = 196.1081, found 196.1083.

Ethyl 2-amino-4-phenyl-1H-imidazole-5-carboxylate (3n):

![Structure](image1.png)

Yellow oil. Yield: 169 mg (73%); 1H NMR (500 MHz, DMSO-d$_6$) δ 10.86 (s, 1H), 7.86 (d, J = 7.4 Hz, 2H), 7.32-7.24 (m, 3H), 5.73 (s, 2H), 4.13 (q, J = 7.1 Hz, 2H), 1.19 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.8, 156.6, 139.0, 137.0, 133.9, 132.8, 132.6, 64.5, 19.5. HRMS (ESI) calcd. for C$_{12}$H$_{14}$N$_3$O$_2$ [M+H]$^+$ = 232.1081, found 232.1082.

Ethyl 2-(2-ethoxy-2-oxoethyl)-4-phenyl-1H-imidazole-5-carboxylate (3o):

![Structure](image2.png)

Yellow solid, m.p. 116.3-116.7 °C. Yield: 193 mg (64%); 1H NMR (500 MHz, CDCl$_3$) δ 9.22 (s, 1H), 7.24-7.16 (m, 5H), 5.14 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 4.16 (t, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 168.5, 165.6, 147.1, 131.2, 128.8, 127.3, 126.3, 125.1, 111.6, 93.3, 61.6, 59.7, 14.6, 14.2. HRMS (ESI) calcd. for C$_{16}$H$_{19}$N$_2$O$_4$ [M+H]$^+$ = 303.1339, found 303.1339.

Ethyl 2-(2-fluorobenzyl)-4-phenyl-1H-imidazole-5-carboxylate (3p):

![Structure](image3.png)

Yellow oil; Yield: 185 mg (57%); 1H NMR (500 MHz, CDCl$_3$) δ 7.79 (s, 2H), 7.40-7.33 (m, 3H), 7.26 (s, 2H), 7.12-7.04 (m, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 1.27 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 159.6 (d, J = 245.1 Hz), 159.4, 146.8, 131.1, 130.2, 130.0 (d, J = 3.8 Hz), 128.3, 128.2, 126.8, 123.7, 123.6, 122.1 (d, J = 15.6 Hz), 120.7, 114.5 (d, J = 21.6 Hz), 60.1, 27.2 (d, J = 3.3 Hz), 13.1. HRMS (ESI) calcd. for C$_{19}$H$_{18}$FN$_2$O$_2$ [M+H]$^+$ = 325.1347, found 325.1348.
Ethyl 2-(2-ethoxy-2-oxoethyl)-4-(p-tolyl)-1H-imidazole-5-carboxylate (3q):

Yellow oil. Yield: 250 mg (79%); 1H NMR (500 MHz, CDCl$_3$) δ 9.07 (s, 1H), 7.16 (d, $J = 8.1$ Hz, 2H), 7.03 (d, $J = 8.0$ Hz, 2H), 5.15 (s, 2H), 4.28 (d, $J = 7.2$ Hz, 2H), 4.19 (d, $J = 7.1$ Hz, 2H), 2.31 (s, 3H), 1.32-1.26 (m, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 168.4, 165.6, 146.8, 137.3, 129.5, 128.4, 126.3, 125.3, 111.2, 93.1, 61.5, 59.6, 21.3, 14.6, 14.2. HRMS (ESI) calcd. for C$_{17}$H$_{21}$N$_2$O$_4$ [M+H]$^+$ =317.1496, found 317.1498.

Ethyl 2-amino-4-(4-methoxyphenyl)-1H-imidazole-5-carboxylate (3r):

Yellow oil. Yield: 178 mg (68%); 1H NMR (500 MHz, DMSO-d$_6$) δ 10.68 (s, 1H), 7.86 (d, $J = 8.6$ Hz, 2H), 6.86 (d, $J = 9.0$ Hz, 2H), 5.68 (s, 2H), 4.12 (q, $J = 7.1$ Hz, 2H), 3.73 (s, 3H), 1.20 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, DMSO-d$_6$) δ 160.2, 159.3, 151.8, 130.4, 113.3, 59.6, 55.5, 14.8. HRMS (ESI) calcd. for C$_{13}$H$_{16}$N$_3$O$_3$ [M+H]$^+$ = 262.1186, found 262.1188.

Ethyl 2-(2-fluorobenzyl)-4-(4-methoxyphenyl)-1H-imidazole-5-carboxylate (3s):

Yellow oil; Yield: 163 mg (46%); 1H NMR (500 MHz, CDCl$_3$) δ 9.58 (s, 1H), 7.87 (s, 1H), 7.31-7.25 (m, 2H), 7.09 (d, $J = 6.8$ Hz, 2H), 6.92 (d, $J = 8.8$ Hz, 2H), 4.34-4.24 (m, 2H), 4.15 (s, 2H), 3.83 (s, 3H), 1.30 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 161.7, 159.8, 159.8, 131.2, 131.2, 130.5, 129.3, 129.2, 124.7, 124.7, 115.7, 115.5, 113.3, 60.7, 55.2, 28.5, 14.2. HRMS (ESI) calcd. for C$_{20}$H$_{20}$FN$_2$O$_3$ [M+H]$^+$ = 355.1452, found 355.1452.
Ethyl 2-amino-4-(3-bromophenyl)-1H-imidazole-5-carboxylate (3t):

Yellow solid, m.p. 182.6-182.9 °C; Yield: 273 mg (88%); 1H NMR (500 MHz, DMSO-d6) δ 10.86 (s, 1H), 7.86 (d, J = 7.4 Hz, 2H), 7.32-7.24 (m, 3H), 5.73 (s, 2H), 4.13 (q, J = 7.1 Hz, 2H), 1.19 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ 164.8, 156.6, 139.0, 137.0, 133.9, 132.8, 132.6, 64.5, 19.5; HRMS (ESI) calcd. for C_{12}H_{13}BrN_{3}O_{2}[M+H]^{+} = 310.0186, found 310.0186.

Ethyl 4-(3-bromophenyl)-2-(2-fluorobenzyl)-1H-imidazole-5-carboxylate (3u):

Yellow oil; Yield: 330 mg (88%); 1H NMR (500 MHz, CDCl_{3}) δ 9.89 (s, 1H), 7.93 (s, 1H), 7.93 (s, 1H), 7.40 (m, 1H), 7.39 (m, 1H), 7.20-7.16 (m, 2H), 7.06-6.99 (m, 2H), 4.22 (q, J = 7.1 Hz, 2H), 4.10 (s, 2H), 1.23 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl_{3}) δ 159.6 (d, J = 245.1 Hz), 159.4, 146.8, 131.1, 130.2, 130.0 (d, J = 3.8 Hz), 128.3, 128.2, 126.8, 123.7, 123.6, 122.1 (d, J = 15.6 Hz), 120.7, 114.5 (d, J = 21.6 Hz), 60.1, 27.2 (d, J = 3.3 Hz), 13.1. HRMS (ESI) calcd. for C_{19}H_{17}BrF_{2}N_{2}O_{2} [M+H]^+ = 403.0452, found 403.0452.
X-ray crystallography Data of 3g (CCDC No: 1045551):

Single crystals of compound 3g were measured on a Rigaku RAXIS-RAPID single-crystal diffractometer. The recrystallization solvent of 3g was EtOH.

Table S1 X-ray crystallography data of 3g

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula moiety</td>
<td>C_{13}H_{13}BrN_{2}O_{2}</td>
</tr>
<tr>
<td>Formula sum</td>
<td>C_{13}H_{13}BrN_{2}O_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>309.16</td>
</tr>
<tr>
<td>Temperature</td>
<td>293 K</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.0885(9) Å, b = 10.1681(9) Å, c = 15.4664(10) Å, (\alpha = 88.451(6)) deg., (\beta = 87.493(7)) deg., (\gamma = 66) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1307.0(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.571 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>3.141 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>624</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.18 x 0.16 x 0.13 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.4 to 25.3 deg</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>8223 / 4768 [R(int) = 0.0385]</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4768 / 0 / 329</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.023</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0461, wR2 = 0.0883</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0889, wR2 = 0.1089</td>
</tr>
</tbody>
</table>
1H NMR (500 MHz) and 13C NMR (125 MHz) Spectra of 3: