Effects of V$_2$O$_5$ Nanowires on the Performances of Li$_2$MnSiO$_4$ as Cathode Material for Lithium-ion Batteries

Hai Zhua, Xiaoling Mab*, Ling Zana, Youxiang Zhanga*

a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China;
b College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China.

* Corresponding author. Email: yxzh04@whu.edu.cn; maxiaoling@hue.edu.cn
Fig. 1S The SEM (a) and TEM (b) images of the Li$_2$MnSiO$_4$/C composite.
Fig. 2S The cyclic voltammograms (CV) curves of the LMS/C/V_2O_5 performed at a scan rate of 0.1 mV s\(^{-1}\) between 1.5 and 4.8 V (vs. Li\(^+\)/Li).
Fig. 3S The charge-discharge profiles of the V$_2$O$_5$ nanowires at a rate of 16 mA g$^{-1}$ in a voltage window of 1.5-4.8 V (vs. Li$^+$/Li) as cathode materials for lithium ion batteries.