Supplementary Information

Stable and reversible doping of graphene by using KNO$_3$ solution and photo-desorption current response

M. Farooq Khan, M. Zahir Iqbal, M. Waqas Iqbal, Vladimir M. Iermolenko, H. M. Waseem Khalil, Jungtae Nam, Keun Soo Kim, Hwayong Noh and Jonghwa Eom*

Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.

*E-mail: eom@sejong.ac.kr
Figure S1. (a) The atomic force microscopic image of pristine CVD-grown graphene. (b) The thickness profile along the green line in (a). (c) SEM image of CVD-grown graphene channel in the device.
Figure S2. Zoom-in spectra of 2D band of pristine and doped graphene (Device-1) for different time.

Figure S3. Change of charge carrier density (Δn) as a function of treatment time for CVD-grown graphene (Device-1 & Device-2).
Figure S4. XPS spectra of CVD-grown graphene doped by KNO₃ solution for 20 min.

Table 1. The electron and hole mobilities of pristine, doped, after 2 month and annealed CVD-grown graphene (Device-4).

<table>
<thead>
<tr>
<th>Device-4</th>
<th>Pristine</th>
<th>Doped (20 min)</th>
<th>After 2 months</th>
<th>Annealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron mobility (cm²/Vs)</td>
<td>1304</td>
<td>2950</td>
<td>2782</td>
<td>896</td>
</tr>
<tr>
<td>Hole mobility (cm²/Vs)</td>
<td>1451</td>
<td>3024</td>
<td>2827</td>
<td>1303</td>
</tr>
</tbody>
</table>