Electronic Supplementary Information for:

Solvothermally synthesized graphene nanosheets supporting spinel NiFe$_2$O$_4$ nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction

Pengxi Li,a,b Ruguang Ma,b,c,d Yao Zhou,b,c,d Yongfang Chen,b,e Zhenzhen Zhou,b,c,d Guanghui Liu,b,c,d Qian Liu,*b,c,d Guihua Peng,*a and Jiacheng Wang*b,c,d

a State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical of Guangxi Normal University, Guilin 541004, Guangxi, China.

pengguihua164@163.com

b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China. jiacheng.wang@mail.sic.ac.cn; qianliu@sunm.shcnc.ac.cn

c Innovation Center for Inorganic Materials Genomic Science, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

d Shanghai Institute of Materials Genome, Shanghai, P. R. China.

e University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
Fig. S1 High-resolution TEM image of graphene.
Fig. S2 Tafel plots of graphene, NiFe₂O₄, NiFe₂O₄/graphene nanohybrid and commercial Pt/C from the corresponding LSV curves measured in O₂-saturated 0.1M KOH at a rotating speed of 1600 rpm.
Fig. S3 LSVs for the ORR of graphene at different rotation rates.
Fig. S4 LSVs for the ORR of NiFe$_2$O$_4$ at different rotation rates.