Supporting information

A high-performance ambipolar organic field-effect transistors based on a bidirectional π-extended diketopyrrolopyrrole under ambient conditions

Jinfeng Bai,a† Yucun Liu,a† Sangyoon Oh,b Wenwei Lei,a Bingzhu Yin*,a Sooyoung Park*b and Yuhe Kan,*c

a Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Yanbian University, Ministry of Education, Yanji, Jilin 133002, PR China. E-mail: zqcong@ybu.edu.cn; Fax: +86 433 2732456; Tel: +86 433 2732298

b Director of Center for Supramolecular Optoelectronic Materials (CSOM) Professor of Materials Science & Engineering, Seoul National University, email : parksy@snu.ac.k

c Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, China. E-mail: yhkan@yahoo.cn

† These authors contributed equally.
Contents

1. Table
Table S1. Calculated absorption wavelength (nm), oscillator strength (f) and transition nature of DPP-2T2P-2DCV

2. Figures
Fig. S1. FT-IR spectrum
Fig. S2. TDA and DSC curves
Fig. S3. Calculated and experimental UV-Vis spectra
Fig. S4. Typical output curves of the OFET devices in air.
Fig. S5. Typical output and transfer curves of the OFET devices in nitrogen

3. Characterization
Fig S6. 1H NMR spectrum of DPP-2T2P-2CHO in CDCl$_3$.
Fig S7. 13C NMR spectrum of DPP-2T2P-2CHO in CDCl$_3$.
Fig S8. Mass spectrum of DPP-2T2P-2CHO.
Fig. S9. 1H NMR spectrum of DPP-2T2P-2DCV in CDCl$_3$.
Fig. S10. 13C NMR spectrum of DPP-2T2P-2DCV in CDCl$_3$.
Fig. S11. Mass spectrum of DPP-2T2P-2DCV.
1. Table

Table S1. Calculated absorption wavelength (nm), oscillator strength (f) and transition nature of DPP-2T2P-2DCV at CAM-B3LYP/6-31g* level of theory in chloroform solvent.

<table>
<thead>
<tr>
<th>State</th>
<th>λ_{max} (nm)</th>
<th>f</th>
<th>Main contributions</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_0 \rightarrow S_1$</td>
<td>595.4</td>
<td>2.0101</td>
<td>HOMO \rightarrow LUMO (88%)</td>
<td>CT(DPP \rightarrow B-DCV)</td>
</tr>
<tr>
<td>$S_0 \rightarrow S_3$</td>
<td>368.3</td>
<td>1.3508</td>
<td>H-2 \rightarrow LUMO (25%), H-1 \rightarrow L+1 (17%), HOMO \rightarrow L+2 (51%)</td>
<td>CT(DPP \rightarrow B-DCV)</td>
</tr>
<tr>
<td>$S_0 \rightarrow S_6$</td>
<td>335.5</td>
<td>0.4475</td>
<td>H-2 \rightarrow LUMO (46%), HOMO \rightarrow L+2 (32%)</td>
<td>LE(\pi \rightarrow \pi*)</td>
</tr>
</tbody>
</table>

2. Figures

![Figure S1](image1.png)

Fig. S1 FT-IR spectrum of DPP-2T2P-2DCV and DPP-2T2P-2CHO.

![Figure S2](image2.png)

Fig. S2. (left) Thermogravimetric analysis and (right) differential scanning calorimetry curves for DPP-2T2P-2DCV.
Fig. S3 Calculated absorption spectra of compound 1 (black solid) compared with experimental spectra (white solid) in acetonitrile.

Fig. S4 Typical output curves of the OFET devices in air.
Fig. S5 Typical output (a,b) and transfer (c,d) curves of the OFET devices in nitrogen.

3. Characterization

Fig. S6 1H NMR spectrum of DPP-2T2P-2CHO in CDCl$_3$.
Fig. S7 13C NMR spectrum of DPP-2T2P-2CHO in CDCl$_3$.

Fig. S8 Mass spectrum of DPP-2T2P-2CHO.
Fig. S9 1H NMR spectrum of **DPP-2T2P-2DCV** in CDCl$_3$.

Fig. S10 13C NMR spectrum of **DPP-2T2P-2DCV** in CDCl$_3$.
Fig. S11 Mass spectrum of **DPP-2T2P-2DCV**.