Novel antibacterial electrospun materials based on polyelectrolyte complexes of a quaternized chitosan derivative

Kalin N. Kalinov, Milena G. Ignatova, Nevena E. Manolova, Nadya D. Markova, Daniela B. Karashanov and Iliya B. Rashkov

Fig. S1 UV-VIS spectra of AgNPs prepared: in 85% HCOOH (a) and in 85% HCOOH in the presence of TMCh (b). Ag NO$_3$ concentration – 0.08 mol.L$^{-1}$.

Fig. S2 Digital photographs of antibacterial activity of nanofibrous materials from PEC TMCh/PAA and TMCh/PAMPS and from AgNPS-containing TMCh/PAA against *S. aureus* evaluated by viable cell-counting method after 180-min of incubation. (a) control – bacteria cell suspension, (b) TMCh/PAA mat, (c) TMCh/PAMPS mat and (d) TMCh/PAA/AgNPs mat.
Fig. S3 Digital photographs of antibacterial activity of nanofibrous materials from PEC TMCh/PAA and TMCh/PAMPS and from AgNPS-containing TMCh/PAA against *E. coli* evaluated by viable cell-counting method after 1440-min of incubation. (a) control – bacteria cell suspension, (b) TMCh/PAA mat, (c) TMCh/PAMPS mat and (d) TMCh/PAA/AgNPs mat.