Supporting information for

Pd/Cu-Cocatalyzed Regioselective Arylation of Thiazole Derivatives at 2-Position under Ligand-Free Conditions

Jian Gua and Chun Caia*

a Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. China

* Corresponding Author E-mail: c.cai@njust.edu.cn

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{N}};
\node at (1,0) {\text{S}};
\node at (2,0) {\text{N}};
\node at (3,0) {\text{R}1};
\node at (3,-1) {\text{N}};
\node at (3,-2) {\text{S}};
\node at (3,-3) {\text{R}1};
\end{tikzpicture}
\end{center}

\\text{+}

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{I}};
\node at (1,0) {\text{R}1};
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{Pd(OAc)}_2, \text{Cu(TFA)}_2};
\node at (1,0) {\text{t-BuOLi}};
\node at (2,0) {\text{DMF, 130\textdegree C}};
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{N}};
\node at (1,0) {\text{S}};
\node at (2,0) {\text{R}1};
\node at (3,0) {\text{N}};
\node at (3,-1) {\text{S}};
\node at (3,-2) {\text{R}1};
\end{tikzpicture}
\end{center}

1. Experimental \hspace{1cm} 2

2. Characterization Data \hspace{1cm} 2

3. NMR Spectra of All Products \hspace{1cm} 5
1 Experimental

1.1 General
All chemical reagents are obtained from commercial suppliers and used without further purification. All known compounds are identified by appropriate technique such as 1H NMR, 13C NMR and compared with previously reported data. Analytical thin-layer chromatography are performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. 1H NMR and 13C NMR spectra are recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz and 125 MHz in CDCl$_3$, respectively, and chemical shifts are reported in ppm. GC analyses are performed on an Agilent 7890A instrument (Column: Agilent 19091J-413: 30 m \times 320 μm \times 0.25 μm, carrier gas: H$_2$, FID detection. Mass spectra are taken on a Thermo Scientific ISQ LT GC-MS instrument in the electron ionization (EI) mode. Elemental analyses are performed on a Yanagimoto MT3CHN recorder.

1.2 Experimental Procedure
General Procedure for the Arylation of Thiazole Derivatives: A mixture of 4-methylthiazole (1.0 mmol), iodobenzene (1.0 mmol), Pd(OAc)$_2$ (0.01 mmol), Cu(TFA)$_2$ (0.2 mmol) and t-BuOLi (2.0 mmol) in DMF (3.0 mL) was stirred at 130°C for 3 h. After the completion of the reaction, the mixture was cooled to 25°C and then EtOAc and H$_2$O were added to it. The organic layer was separated and washed with brine, dried over Na$_2$SO$_4$. The volatiles were removed under vacuum to afford the crude product, and analyzed by GC. The crude product was purified by column chromatography on silica gel and eluted with EtOAc/hexanes (10/90) to afford the desired pure product.

2. Characterization Data

\[
\textbf{4-methyl-2-phenylthiazole (3a)}^{11}: ^1\text{H NMR (500 MHz, CDCl}_3\text{)} \delta 7.93 (dd, J = 7.9, 1.5 Hz, 2H), 7.46 – 7.38 (m, 3H), 6.87 (d, J = 0.8 Hz, 1H), 2.51 (s, 3H). ^{13}\text{C NMR (125 MHz, CDCl}_3\text{)} \delta 166.73 (s), 152.71 (s), 130.17 (s), 128.93 (s), 127.93 (s), 125.54 (s), 112.48 (s), 16.23 (s).
\]
4-methyl-2-o-tolylthiazole (3b)

$\mathrm{^{1}H\text{ NMR (500 MHz, CDCl}_{3}\delta 7.69 (dd, J = 7.5, 1.1 Hz, 1H), 7.32 – 7.25 (m, 3H), 6.94 (dd, J = 1.9, 0.9 Hz, 1H), 2.57 (s, 3H), 2.53 (d, J = 1.0 Hz, 3H).}}$

$\mathrm{^{13}C\text{ NMR (125 MHz, CDCl}_{3}\delta 167.09 (s), 153.13 (s), 136.65 (s), 133.41 (s), 131.39 (s), 130.01 (s), 129.31 (s), 126.10 (s), 114.14 (s), 21.38 (s), 17.39 (s).}}$

$\mathrm{MS (EI) m/z: 189 [M^+].}}$

$\mathrm{Anal. Calcd for C_{11}H_{11}NS: C, 69.80; H, 5.86, N, 7.40. Found: C, 69.85; H, 5.89; N, 7.36.}}$

4-methyl-2-m-tolylthiazole (3c)

$\mathrm{^{1}H\text{ NMR (500 MHz, CDCl}_{3}\delta 7.78 (s, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 6.86 (s, 1H), 2.51 (d, J = 0.8 Hz, 3H), 2.41 (s, 3H).}}$

$\mathrm{^{13}C\text{ NMR (125 MHz, CDCl}_{3}\delta 167.97 (s), 153.83 (s), 138.78 (s), 133.79 (s), 130.72 (s), 128.88 (s), 127.04 (s), 113.39 (s), 21.43 (s), 17.41 (s).}}$

$\mathrm{MS (EI) m/z: 189 [M^+].}}$ Anal. Calcd for C_{11}H_{11}NS: C, 69.80; H, 5.86, N, 7.40. Found: C, 69.85; H, 5.89; N, 7.36.

4-methyl-2-p-tolylthiazole (3d)

$\mathrm{^{1}H\text{ NMR (500 MHz, CDCl}_{3}\delta 7.78 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.78 (d, J = 0.7 Hz, 1H), 2.45 (d, J = 0.7 Hz, 3H), 2.34 (s, 3H).}}$

$\mathrm{^{13}C\text{ NMR (125 MHz, CDCl}_{3}\delta 167.92 (s), 153.73 (s), 140.08 (s), 131.28 (s), 129.66 (s), 126.49 (s), 113.03 (s), 21.49 (s), 17.39 (s).}}$

2-(4-methoxyphenyl)-4-methylthiazole (3e)

$\mathrm{^{1}H\text{ NMR (500 MHz, CDCl}_{3}\delta 7.82 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 6.75 (s, 1H), 3.80 (s, 3H), 2.44 (s, 3H).}}$

$\mathrm{^{13}C\text{ NMR (126 MHz, CDCl}_{3}\delta 167.64 (s), 161.10 (s), 153.57 (s), 128.04 (s), 114.32 (s), 112.55 (s), 55.49 (s), 17.36 (s).}}$

$\mathrm{MS (EI) m/z: 205 [M^+].}}$ Anal. Calcd for C_{11}H_{11}NO_{2}S: C, 64.36; H, 5.40, N, 6.82. Found: C, 64.32; H, 5.43; N, 6.80.

4-methyl-2-(4-nitrophenyl)thiazole (3f)

$\mathrm{^{1}H\text{ NMR (500 MHz, CDCl}_{3}\delta 8.30 – 8.21 (m, 2H), 8.12 – 8.02 (m, 2H), 7.01 (s, 1H), 2.51 (s, 3H).}}$

$\mathrm{^{13}C\text{ NMR (125 MHz, CDCl}_{3}\delta 164.48 (s), 155.19 (s), 148.34 (s), 139.35 (s), 127.07 (s), 124.40 (s), 115.89 (s), 17.32 (s).}}$

$\mathrm{MS (EI) m/z: 220 [M^+].}}$ Anal. Calcd for C_{10}H_{8}N_{2}O_{2}S: C, 54.53; H, 3.66, N, 12.72. Found: C, 54.55; H, 3.70; N, 12.68.

2-(4-chlorophenyl)-4-methylthiazole (3g)

$\mathrm{^{1}H\text{ NMR (500 MHz, CDCl}_{3}\delta 7.94 – 7.88 (m, 2H), 7.14 – 7.08 (m, 2H), 6.85 (d, J = 0.9 Hz, 1H), 2.50 (d, J = 0.9 Hz, 3H).}}$

$\mathrm{^{13}C\text{ NMR (125 MHz, CDCl}_{3}\delta 166.49 (s), 164.82 (s), 162.83 (s), 153.98 (s), 130.26 (s), 128.47 (s), 116.13 (s), 115.95 (s), 113.52 (s), 17.34 (s).}}$

1,4-bis(4-methylthiazol-2-yl)benzene (3h)

$\mathrm{^{1}H\text{ NMR (500 MHz,}}$
CDCl$_3$ δ 7.95 (s, 4H), 6.86 (s, 2H), 2.48 (s, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 166.77 (s), 154.27 (s), 134.92 (s), 126.99 (s), 114.03 (s), 17.36 (s). MS (EI) m/z: 272 [M$^+$]. Anal. Calcd for C$_{14}$H$_{12}$N$_2$S$_2$: C, 61.73; H, 4.44; N, 10.28. Found: C, 61.77; H, 4.50; N, 10.25.

2-phenylbenzo[d]thiazole (8a)[5]: 1H NMR (500 MHz, CDCl$_3$) δ 8.13 – 8.07 (m, 3H), 7.90 (d, J = 8.0 Hz, 1H), 7.53 – 7.47 (m, 4H), 7.41 – 7.37 (m, 1H). 13C NMR (125 MHz, CDCl$_3$) δ 168.19 (s), 154.27 (s), 135.19 (s), 133.75 (s), 131.08 (s), 129.14 (s), 127.69 (s), 126.43 (s), 125.31 (s), 123.36 (s), 121.74 (s).

2-o-tolylbenzo[d]thiazole (8b)[5]: 1H NMR (500 MHz, CDCl$_3$) δ 8.08 (ddd, J = 8.2, 1.0, 0.6 Hz, 1H), 7.90 (ddd, J = 7.9, 1.1, 0.6 Hz, 1H), 7.84 (dd, J = 7.9, 1.1 Hz, 1H), 7.73 (dd, J = 7.9, 1.1 Hz, 1H), 7.48 (ddd, J = 8.3, 1.2 Hz, 1H), 7.40 – 7.26 (m, 4H), 2.64 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 168.13 (s), 153.93 (s), 137.38 (s), 135.73 (s), 133.21 (s), 131.68 (s), 130.68 (s), 130.14 (s), 126.25 (s), 125.22 (s), 123.51 (s), 121.50 (s), 21.50 (s).

2-m-tolylbenzo[d]thiazole (8c)[5]: 1H NMR (500 MHz, CDCl$_3$) δ 8.04 (d, J = 8.1 Hz, 1H), 7.90 (s, 1H), 7.84 (dd, J = 12.4, 8.0 Hz, 2H), 7.45 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 7.5 Hz, 1H), 2.41 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 168.51 (s), 154.14 (s), 139.00 (s), 135.10 (s), 133.56 (s), 131.98 (s), 129.06 (s), 128.12 (s), 126.44 (s), 125.13 (d, J = 34.7 Hz), 123.26 (s), 121.74 (s), 21.49 (s).

2-p-tolylbenzo[d]thiazole (8d)[5]: 1H NMR (500 MHz, CDCl$_3$) δ 8.04 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 7.5 Hz, 1H), 2.41 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 168.33 (s), 154.33 (s), 141.49 (s), 135.10 (s), 129.82 (s), 127.61 (s), 126.35 (s), 125.11 (s), 121.68 (s), 21.63 (s).

2-(4-methoxyphenyl)benzo[d]thiazole (8e)[6]: 1H NMR (500 MHz, CDCl$_3$) δ 8.01 (dd, J = 8.5, 3.3 Hz, 3H), 7.86 (d, J = 7.9 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.36 – 7.32 (m, 1H), 7.01 – 6.96 (m, 2H), 3.87 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 167.99 (s), 162.05 (s), 154.30 (s), 134.95 (s), 129.24 (s), 128.16 (s), 126.43 (d, J = 25.2 Hz), 124.92 (s), 122.93 (s), 121.62 (s), 114.49 (s), 55.59 (s).

2-(4-nitrophenyl)benzo[d]thiazole (8f)[7]: 1H NMR (500 MHz, CDCl$_3$) δ 8.34 (d, J = 8.8 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H), 8.11 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 164.95 (s), 154.20 (s), 149.13 (s), 139.28 (s), 135.59 (s), 128.35 (s), 127.04 (s), 126.34 (s), 124.24 (d, J = 49.7 Hz), 124.01 – 123.62 (m), 121.96 (s).
2-(4-chlorophenyl)benzo[d]thiazole (8g)\[7\]: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.13 – 7.98 (m, 3H), 7.85 (d, \(J = 8.0 \text{ Hz} \), 1H), 7.54 – 7.43 (m, 1H), 7.41 – 7.31 (m, 1H), 7.14 (t, \(J = 8.6 \text{ Hz} \), 2H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 166.78 (s), 165.53 (s), 163.52 (s), 154.19 (s), 135.15 (s), 130.03 (s), 129.58 (s), 126.50 (s), 125.33 (s), 123.29 (s), 121.70 (s), 116.31 (s), 116.14 (s).

[1] John, Oliver; Org. Lett. 2007, 9, 4009-4012

Copies of products \(^1\)H NMR and \(^{13}\)C NMR

\(^1\)H NMR spectrum (500 MHz, CDCl\(_3\)) of 3a
13C NMR spectrum (125 MHz, CDCl$_3$) of 3a

1H NMR spectrum (500 MHz, CDCl$_3$) of 3b
13C NMR spectrum (125 MHz, CDCl$_3$) of $3b$

1H NMR spectrum (500 MHz, CDCl$_3$) of $3c$
13C NMR spectrum (125 MHz, CDCl$_3$) of 3c

1H NMR spectrum (500 MHz, CDCl$_3$) of 3d
\(^{13}\text{C} \) NMR spectrum (125 MHz, CDCl\(_3\)) of 3d

\(^{1}\text{H} \) NMR spectrum (500 MHz, CDCl\(_3\)) of 3e
13C NMR spectrum (125 MHz, CDCl$_3$) of 3e

1H NMR spectrum (500 MHz, CDCl$_3$) of 3f
13C NMR spectrum (125 MHz, CDCl$_3$) of 3f

1H NMR spectrum (500 MHz, CDCl$_3$) of 3g
13C NMR spectrum (125 MHz, CDCl$_3$) of 3g

1H NMR spectrum (500 MHz, CDCl$_3$) of 3h
13C NMR spectrum (125 MHz, CDCl$_3$) of 3h

1H NMR spectrum (500 MHz, CDCl$_3$) of 8a
13C NMR spectrum (125 MHz, CDCl$_3$) of 8a

1H NMR spectrum (500 MHz, CDCl$_3$) of 8b
13C NMR spectrum (125 MHz, CDCl$_3$) of 8b

1H NMR spectrum (500 MHz, CDCl$_3$) of 8c
13C NMR spectrum (125 MHz, CDCl$_3$) of 8c

1H NMR spectrum (500 MHz, CDCl$_3$) of 8d
13C NMR spectrum (125 MHz, CDCl$_3$) of 8d

1H NMR spectrum (500 MHz, CDCl$_3$) of 8e
13C NMR spectrum (125 MHz, CDCl$_3$) of 8e

1H NMR spectrum (500 MHz, CDCl$_3$) of 8f
13C NMR spectrum (125 MHz, CDCl$_3$) of 8f

1H NMR spectrum (500 MHz, CDCl$_3$) of 8g
13C NMR spectrum (125 MHz, CDCl$_3$) of 8g

MS 3c