SUPPORTING INFORMATION

For

An Efficient and Metal Free Synthesis of Benzylpyridines Using HI through Deoxygenation Reaction

S. Chandrasekar, I. Karthikeyan and G. Sekar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai
-600 036, Tamil Nadu India

E-mail: gsekar@iitm.ac.in

Table of Contents

- General experimental procedures 2
- Reference 3
- 1H and 13C spectra for all compounds (2a-2r) 4
Synthesis of secondary alcohols (1a-1r):

Magnesium turnings were placed in a oven dried two neck 50 mL round bottom flask and the flask was further dried by hot air gun with applying vacuum. Then the setup was allowed to room temperature, refilled with nitrogen. Under nitrogen flow, a catalytic amount of iodine was added, followed by freshly distilled THF. The reaction mixture was cooled to 0 °C followed by corresponding aryl halide was added by drop wise. After the disappearance of the iodine color, the reaction was allowed to stir at room temperature for 2 hours. Once all the magnesium turnings were dissolved, the reaction mixture was cooled to 0 °C then pyridine-2-aldehyde (dissolved in THF) was added dropwise to the Grignard reagent. The reaction was monitored by TLC and the reaction mixture was quenched by aqueous \(\text{NH}_4 \text{Cl} \) and extracted with ethyl acetate. The combined organic layers were dried over \(\text{Na}_2\text{SO}_4 \) and the solvent was evaporated under vacuum. The residue was purified by column chromatography with ethyl acetate/hexanes solvents to provide pure products (1a-1r).

![Chemical structure of secondary alcohols](image)

Synthesis of primary and secondary alcohols (5a-5e):

Commercially available 2,6-pyridine-di-carboxylic A was esterified with catalytic amount of acid in ethanol as solvent to provide ester B in 83% yield.\(^1\) This diester B was reduced to 2,6-pyridine-di-methanol C using sodium borohydride and calcium chloride in ethanol using literature procedure.\(^2\) The mono aldehyde D was prepared using selenium dioxide, by oxidation of compound C in 1,4-dioxane.\(^3\) The resulting monoaldehyde was converted to di-alcohol (5a-5e) having primary and secondary alcohol group using corresponding aryl magnesium bromide (2 equivalents).

![Chemical structures of primary and secondary alcohols](image)
Reference:

400 MHz 1HNMR spectrum of 2a in CDCl$_3$
13C NMR spectrum of 2a in CDCl$_3$
400 MHz 1H NMR spectrum of 2b in CDCl$_3$
100 MHz 13C NMR spectrum of 2b in CDCl$_3$
400 MHz 1HNMR spectrum of 2c in CDCl$_3$
100 MHz 13C NMR spectrum of 2c in CDCl$_3$
400 MHz 1H NMR spectrum of 2d in CDCl$_3$
100 MHz 13CNMR spectrum of 2d in CDCl$_3$
400 MHz 1H NMR spectrum of 2e in CDCl$_3$
100 MHz 13CNMR spectrum of 2e in CDCl$_3$
400 MHz 1H NMR spectrum of 2f in CDCl$_3$
100 MHz 13C NMR spectrum of 2f in CDCl$_3$
400 MHz 1HNMR spectrum of 2g in CDCl$_3$
100 MHz 13C NMR spectrum of 2g in CDCl$_3$
400 MHz 1H NMR spectrum of 2h in CDCl$_3$
100 MHz 13C NMR spectrum of 2h in CDCl$_3$
400 MHz 1H NMR spectrum of 2i in CDCl$_3$
100 MHz 13C NMR spectrum of 2i in CDCl$_3$
400 MHz 1H NMR spectrum of 2j in CDCl$_3$
100 MHz 13C NMR spectrum of 2j in CDCl$_3$
400 MHz 1H NMR spectrum of 2k in CDCl$_3$
100 MHz 13C NMR spectrum of $2k$ in CDCl$_3$
400 MHz 1H NMR spectrum of 21 in CDCl$_3$
100 MHz 13C NMR spectrum of 21 in CDCl$_3$
400 MHz 1HNMR spectrum of 2m in CDCl$_3$
100 MHz 13C NMR spectrum of $2m$ in CDCl$_3$
400 MHz 1H NMR spectrum of 2n in CDCl$_3$
100 MHz 13CNMR spectrum of 2n in CDCl$_3$
400 MHz 1H NMR spectrum of $2o$ in CDCl$_3$
100 MHz 13C NMR spectrum of 2o in CDCl$_3$
400 MHz 1H NMR spectrum of 2p in CDCl$_3$
100 MHz 13C NMR spectrum of 2p in CDCl$_3$
100 MHz 13C NMR spectrum of 2q in CDCl$_3$
100 MHz 13C NMR spectrum of 2r in CDCl$_3$
100 MHz 13C NMR spectrum of 2r in CDCl$_3$
400 MHz 1H NMR spectrum of 6a in CDCl$_3$
100 MHz 13C NMR spectrum of 6a in CDCl$_3$
400 MHz 1H NMR spectrum of 6b in CDCl$_3$
100 MHz 13C NMR spectrum of 6b in CDCl$_3$
400 MHz 1H NMR spectrum of $6c$ in CDCl$_3$
100 MHz 13C NMR spectrum of 6c in CDCl$_3$
400 MHz 1H NMR spectrum of 6d in CDCl$_3$
100 MHz 13C NMR spectrum of 6d in CDCl$_3$
400 MHz 1H NMR spectrum of 6e in CDCl$_3$
100 MHz 13C NMR spectrum of 6e in DMSO-d_6
400 MHz 1H NMR spectrum of 8a in CDCl$_3$
100 MHz 13C NMR spectrum of 8a in CDCl$_3$
400 MHz 1H NMR spectrum of 8b in CDCl$_3$
100 MHz 13C NMR spectrum of $8b$ in CDCl$_3$
400 MHz 1H NMR spectrum of 8c in CDCl$_3$
100 MHz 13C NMR spectrum of 8e in CDCl$_3$
400 MHz 1H NMR spectrum of 8d in CDCl$_3$
100 MHz 13C NMR spectrum of 8d in CDCl$_3$
400 MHz 1H NMR spectrum of 8e in CDCl$_3$
100 MHz 13C NMR spectrum of 8e in CDCl$_3$
400 MHz 1H NMR spectrum of 8f in CDCl$_3$
100 MHz 13C NMR spectrum of 8f in CDCl$_3$