Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions

Salman Hassanzadeh,a Karin H. Adolfsson,a and Minna Hakkarainen,a

Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Table of Contents

Preparation and characterization of GOQDs..S1
Particle sizes for GOQD solutions ...S3
Zeta potentials (ζ) of GOQD solutions ..S4
TEM images ...S4
UV-Vis transmittance...S5
AFM images and size analysis in the dried state ...S6
Fluorescence spectroscopy..S6
References...S7

Preparation and characterization of GOQDs

Figure S1. The synthetic scheme for preparation of the GOQDs
Figure S2. a) DSC analysis of the GOQDs in N₂ atmosphere, b) TGA (solid line) and DTG (dots line) curves in N₂ atmosphere.
Figure S3. Raman spectra of Synthesized GOQD

Particle sizes for GOQD solutions

Table S1. Average sizes of the GOQD and GOQD assemblies at different concentrations in deionized H$_2$O as determined by DLS at 25 °C.

<table>
<thead>
<tr>
<th>GOQD [mg/ml]</th>
<th>Average size in diameter [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.7 +/- 0.2</td>
</tr>
<tr>
<td>0.02</td>
<td>0.9 +/- 0.1</td>
</tr>
<tr>
<td>0.05</td>
<td>1.2 +/- 0.7</td>
</tr>
<tr>
<td>0.067</td>
<td>66.7 +/- 4.1</td>
</tr>
<tr>
<td>0.1</td>
<td>66.7 +/- 9.4</td>
</tr>
<tr>
<td>1.0</td>
<td>78.3 +/- 19</td>
</tr>
</tbody>
</table>

Table S2. Average sizes of the GOQDs and GOQD assemblies at a concentration of 0.05 mg/ml after addition of HNO$_3$ (pH 2.15), only deionized H$_2$O (pH 6.93) and after addition of NaOH (pH 11.9) as determined by DLS at 25 °C.

<table>
<thead>
<tr>
<th>pH</th>
<th>Average size in diameter [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>73.1 +/- 9.42</td>
</tr>
</tbody>
</table>
Zeta potentials (ζ) of GOQD solutions

Figure S4. Zeta potential (ζ) measurements of the GOQD solution in the 0.05 mg/ml (a) and 0.1 mg/ml (b) concentrations at deionized water.

TEM images
Figure S5. HR-TEM images of the GOQDs at concentration a) under CAC (0.05 mg/ml) and b) above CAC (1 mg/ml).

UV-Vis transmittance

Figure S6. Typical representation of the UV-Vis transmittance of 1 mg/ml GOQDs solution.
AFM images and size analysis in the dried state

Figure S7. Approximate size and thickness of the single layer and self-assembled GOQDs through AFM images as a function of pH determined by DLS at 25 °C. With HNO₃ addition (pH=2.1), no addition (pH=6.9) and with NaOH (pH=11.9) at a concentration of 0.05 mg/ml in deionized H₂O.

Fluorescence spectroscopy
Figure S8. Fluorescence of 0.05 mg/ml (blue) and 1 mg/ml (red) solutions of GOQDs in deionized H$_2$O at different excitations and emissions.