Supporting information

Synthesis of graphene/α-Fe$_2$O$_3$ composites with excellent electromagnetic wave absorption properties

Tihong Wang, Yongfeng Li, Lina Wang, Chao Liu, Sai Geng, Xilai Jia, Fan Yang, Liqiang Zhang, Liping Liu, Bo You, Xiao Ren, and Haitao Yang

aState Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, P. R. China. Phone/Fax: +86-010-89739028. E-mail: yfli@cup.edu.cn

bBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: htyang@aphy.iphy.ac.cn
Fig. S1. A HRTEM image of Fe$_2$O$_3$ nanoparticle in the composite
Figure S2 TEM images of Fe$_2$O$_3$ formed with absence of GO. (a) A low resolution image. (b) A high resolution image.
Fig. S3. TG curves of rGO/Fe$_2$O$_3$ composites with different amounts of Fe$_2$O$_3$ nanoparticles.
Fig. S4. The reflection loss of rGO/Fe$_2$O$_3$ composites with different amounts of Fe$_2$O$_3$ nanoparticles (a) 78%, (b) 61% measured with different thickness from 1 to 5mm.
Fig. S5. Frequency dependence of real part (a) imaginary part (b) and dielectric loss tangent (c) for three kinds of rGO/Fe$_2$O$_3$ composites.