Supporting Information

A reversible rhodamine 6G-based fluorescence turn-on probe for Fe3+ in water and its application in living cells imaging

Yaming Liu,a Rong Shen,b Jiaxi Ru,a Xiang Yao,a Yang Yang,a Haile Liu,a Xiaoliang Tang,a Decheng Bai,b Guolin Zhang,a Weisheng Liu*a

a Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

E-mail: zhanggl@lzu.edu.cn

liuws@lzu.edu.cn

b Laboratory Centre for Medical Science, school of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000 P.R. China.

List of contents

1. Detection limit determination (Figures S1)
2. Fluorescence spectra of Fe3+, Cr3+ add in L with different TEOA concentrations (Figures S2)
3. The recognition of probe for lanthanide ions (Figures S3)
4. The influence of ethanedioic acid, EDTA, tartaric acid and propanedioic acid to reversibility of the probe (Figures S4)
5. ESI-MS of 1 and L (Figures S5- S6)
6. 1H- and 13C-NMR spectra of 1 (Figures S7- S8)
7. 1H- and 13C-NMR spectra of L (Figures S9- S10)
8. 1H-1H Cosy and 13C-1H Cosy spectra of L (Figures S11- S12)
Fig. S1 Linear response of fluorescence intensity at 560 nm of L (10 µM) to the Fe³⁺ concentrations changes in distilled water.

Fig. S2 Fluorescence intensity at 560 nm of Fe³⁺, Cr³⁺ (50 µM) add in L (10 µM) with different TEOA concentrations.
Fig. S3 Fluorescence spectra of L (10 µM) in the presence of all lanthanide ions (50 µM) except for Pm (radioactive elements) in distilled water.

Fig. S4 Black bars: fluorescence intensity of L-Fe$^{3+}$ (10 µM) at 560 nm; red bars: fluorescence intensity of L-Fe$^{3+}$ (10 µM) at 560 nm in the presence of 100eq. ethanedioic acid (1), EDTA (2), tartaric acid (3) and propanedioic acid (4).
Figure S5. ESI-MS of Compound 1.
Figure S6. ESI-MS of Compound L.
Fig. S7 1H NMR spectrum of 1 in CDCl$_3$.

Fig. S8 13C NMR spectrum of 1 in CDCl$_3$.
Fig. S9 1H NMR spectrum of L in CDCl$_3$.

Fig. S10 13C NMR spectrum of L in CDCl$_3$.
Fig. S11 1H-1H cosy NMR spectrum of L in CDCl$_3$.

Fig. S12 13C-1H cosy NMR spectrum of L in CDCl$_3$.