Facile Synthesis and Photovoltaic Applications of a New Alkylated Bismethano Fullerene as Electron Acceptor for High Open Circuit Voltage Solar Cells

Derya Baran*a, Sule Erten-Ela*b,d, Andreas Kratzerb, Tayebeh Ameria, Christoph Brabec*a,c, Andreas Hirsch*b

*a Institute of Materials for Electronics and Energy Technology, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nurnberg, Martensstrasse 7, 91058, Erlangen, Germany

b Department of Chemistry and Pharmacy, Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander- Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany

c Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstrasse 2, 91058, Erlangen, Germany

d Solar Energy Institute, Ege University, Bornova, 35100 Izmir, Turkey Phone: 0090 232 3111231; E-mail: suleerten@yahoo.com
Fig. S1. HPLC gel-permeation separation of bis-4nonyl [6, 6] methanofullerene

Fig. S2. Mass data of bis-4-propylpentyl [6, 6] methanofullerene
Figure S3. Measured space-charge limited J–V characteristics of the NCBA and P3HT: NCBA blend devices under dark conditions for a) hole-only b) electron-only devices.