Supporting Information

Low temperature synthesis and mechanism of finely dispersed nanorod rutile titanium dioxide

Xinwei Jiang^{ab}, Feng Wang*a, Gen Lic, Lin Qia, Peng Liua, Yanfen Dinga, Shimin

Zhang^a, Mingshu Yang*a

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering

Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^c Department of Materials Science & Engineering, Beijing Institute of Fashion

Technology, Beijing, 100029, China

Band gap $E_{\rm g}$ can be determined using the following equation.

$\alpha = A(h\nu - E_g)^n/h\nu$

 α is absorption coefficient. A is a constant. hv is the energy of light and n is a constant depending on the nature of the electron transition.(*J. Alloys Compd.*, 2015, **632**, 326) Band gap E_g can be obtained from the plots of $(\alpha hv)^{1/2}$ versus hv as the intercept at $(\alpha hv)^{1/2} = 0$ of the extrapolated linear part of the plot (as shown in Figure S9). The band gap values estimated were 3.10, 2.65 and 2.94 eV for pure TiO₂, Fe doping TiO₂ and Al doping TiO₂ respectively.

Figure S1. TEM images of Fe-0.1 (a, b), Fe-0.25 (c, d) and Fe-1 (e, f)

Figure S2. XRD patterns of TiO2 prepared with different acids

Figure S3. Raman spectra of TiO₂ prepared with different acids

Figure S4. TEM images of $\rm TiO_2$ prepared with $\rm H_2SO_4$ (a, b), $\rm HNO_3$ (c, d) and HCl (e, f)

Figure S5. XRD patterns of TiO₂ prepared with different minerals

Figure S6. Raman spectra of TiO2 prepared with different minerals

Figure S7. TEM images of TiO_2 prepared with NaCl (a, b), $AlCl_3$ (c, d) and $FeCl_3$ (e, f)

Figure S8. XPS analysis of TiO₂ prepared with different minerals

Figure S9. Band gap determination using $(\alpha hv)^{1/2}$ versus hv plots of pure TiO₂ and doping TiO₂

Figure S10. ESR spectra of pure TiO_2 , Fe doping TiO_2 and Al doping TiO_2

Figure S11. XRD patterns of TiO_2 prepared at different temperatures

Figure S12. Raman spectra of TiO2 prepared at different temperatures

Figure S13. TEM of images of TiO_2 prepared at 60°C (a, b), 80°C (c, d) and 100°C (e, f)