Electronic Supplementary Information (ESI) for

Effect of dielectric constant on estimation of properties of ionic liquids: An analysis of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[†]

Lourdes del Olmo,^a Isabel Lage-Estebanez,^a Rafael López,^a and José M. García de la Vega^{*a}

Table S 1 Interaction energy (kJ.mol⁻¹) of C₁mimNTf₂ and C₄mimNTf₂, and cation-anion distance (Å) for these ILs as CA model for different dielectric constants

	C ₁ 1	mimNTf ₂	$C_4 mimNTf_2$		
ε	ΔE_{int}	$\mathbf{d}_{H(C^+)-N(A^-)}$	ΔE_{int}	$\mathbf{d}_{H(C^+)-N(A^-)}$	
1	-315.6	2.07	-308.5	2.10	
2	-131.0	2.26	-131.2	2.17	
10	-26.0	2.46	-25.1	2.50	
33	-6.2	2.54	-6.7	2.61	
78	-1.5	2.57	-0.8	2.69	

Table S 2 Interaction energy (kJ.mol⁻¹) of C₁₋₁₂mimNTf₂ and cation-anion distance (Å) for these ILs as CA model

	ΔE	int	$\mathbf{d}_{H(C^+)-N(A^-)}$		
Ionic liquid	$\varepsilon = 1$	$\varepsilon = 78$	$\varepsilon = 1$	$\varepsilon = 78$	
C ₁ mimNTf ₂	-315.6	-1.5	2.07	2.57	
$C_2 mimNTf_2$	-314.6	-1.8	2.09	2.44	
$C_3 mimNTf_2$	-310.0	-1.0	2.10	2.59	
$C_4 mimNTf_2$	-308.5	-0.8	2.10	2.69	
$C_5 mimNTf_2$	-308.0	-1.0	2.10	2.58	
$C_6 mimNTf_2$	-307.1	-0.4	2.10	2.64	
$C_7 mimNTf_2$	-307.1	-0.6	2.10	2.78	
$C_8 mimNTf_2$	-306.6	-0.8	2.10	2.71	
$C_9 mimNTf_2$	-306.3	-0.5	2.10	2.73	
$C_{10}mimNTf_2$	-306.3	-0.4	2.10	2.65	
$C_{11}mimNTf_2$	-306.5	-0.9	2.11	2.58	
$C_{12}mimNTf_2$	-306.6	-1.0	2.11	2.58	

⁰^a Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. E-mail: garcia.delavega@uam.es

Figure S 1 $\sigma\text{-profiles}$ of $\text{C}_{1-12}\text{mimNTf}_2$ represented as C+A model with $\epsilon=1$

Figure S 2 $\sigma\text{-profiles}$ of $\text{C}_{1-12}\text{mim}\text{NTf}_2$ represented as C+A model with $\epsilon=78$

Figure S 3 $\sigma\text{-profiles}$ of $\text{C}_{1-12}\text{mim}\text{NTf}_2$ represented as CA model with $\epsilon=1$

Figure S 4 $\sigma\text{-profiles}$ of $\text{C}_{1-12}\text{mim}\text{NTf}_2$ represented as CA model with $\epsilon=78$

Figure S 5 σ -potentials of C₁mimNTf₂ (black lines) and C₄mimNTf₂ (red lines) represented as CA model with different values of ε

Table S 3 Vaporization enthalpy (kJ.mol⁻¹) of C_{1-12} mimNTf₂ for $\varepsilon = 1$ and $\varepsilon = 78$ with both models, including experimental data

	ΔH_{vap} C	CA model	ΔH_{vap} C		
Ionic liquid	$\varepsilon = 1$	$\varepsilon = 78$	$\varepsilon = 1$	$\varepsilon = 78$	$\Delta H^{a)}_{vapExp}$
C ₁ mimNTf ₂	108.4	123.8	168.8	173.2	-
$C_2 mimNTf_2$	107.2	122.9	167.1	171.6	133.2
$C_3 mimNTf_2$	111.3	125.9	167.4	172.0	133.8
$C_4 mimNTf_2$	116.0	131.8	168.5	173.1	139.2
$C_5 mimNTf_2$	118.4	131.8	169.9	174.3	145.4
$C_6 mimNTf_2$	122.9	139.2	171.3	175.8	150.1
$C_7 mimNTf_2$	125.5	144.2	172.9	177.4	153.7
$C_8 mimNTf_2$	130.4	145.2	174.6	179.1	155.2
$C_9 mimNTf_2$	134.3	150.2	176.3	180.8	-
C_{10} mimNTf ₂	138.2	153.3	178.1	182.6	165.2
C_{11} mimNTf ₂	140.9	154.4	179.8	180.2	-
$C_{12}mimNTf_2$	144.9	158.5	185.8	186.1	171.5

a) M. A. A. Rocha, C. F. R. A. C. Lima, L. R. Gomes, B. Schröder, J. A. P. Coutinho, I. M.

Marrucho, J. M. S. S. Esperança, L. P. N. Rebelo, K. Shimizu, J. N. Canongia Lopes and

L. M. N. B. F. Santos, J. Phys. Chem B, 2011, 115, 10919–10926.

Table S 4 Density (g.mL⁻¹) of C₁₋₁₂mimNTf₂ for $\varepsilon = 1$ and $\varepsilon = 78$ with both models, including experimental data

	ρ CA model		ρ C+A model		
Ionic liquid	$\varepsilon = 1$	$\varepsilon = 78$	$\varepsilon = 1$	$\varepsilon = 78$	ρ_{Exp}
$C_1 mimNTf_2$	1.539	1.520	1.565	1.572	$1.570^{a)}$
$C_2 mimNTf_2$	1.495	1.472	1.517	1.519	$1.515^{a)}$
$C_3 mimNTf_2$	1.460	1.437	1.473	1.476	$1.476^{b)}$
$C_4 mimNTf_2$	1.419	1.399	1.438	1.439	1.436 ^{<i>a</i>)}
$C_5 mimNTf_2$	1.391	1.370	1.406	1.407	$1.404^{b)}$
$C_6 mimNTf_2$	1.360	1.340	1.375	1.376	$1.371^{a)}$
$C_7 mimNTf_2$	1.336	1.315	1.351	1.351	-
$C_8 mimNTf_2$	1.311	1.297	1.326	1.327	$1.319^{a)}$
$C_9 mimNTf_2$	1.288	1.277	1.300	1.304	-
$C_{10}mimNTf_2$	1.270	1.260	1.285	1.285	$1.278^{a)}$
$C_{11}mimNTf_2$	1.250	1.236	1.268	1.267	-
$C_{12}mimNTf_2$	1.231	1.220	1.249	1.250	$1.245^{a)}$

^{a)} M. Tariq, P. A. S. Forte, M. F. Costa Gomes, J. N. Canongia Lopes and L. P. N.

Rebelo, J. Chem. Thermodyn., 2009, 41, 790-798.

 $^{b)}$ J. M. S. S. Esperança, Z. P. Visak, N. V. Plechkova, K. R. Seddon, H. J. R. Guedes

and L. P. N. Rebelo, J. Chem. Eng. Data, 2006, 51, 2009–2015.

Table S 5 Viscosity (cP) of C_{1-12} mimNTf₂ for $\varepsilon = 1$ and $\varepsilon = 78$ with both models, including experimental data

	η CA model		η C+A model		
Ionic liquid	$\varepsilon = 1$	$\epsilon = 78$	$\varepsilon = 1$	$\epsilon = 78$	$\eta^{a)}_{Exp}$
C ₁ mimNTf ₂	28.81	66.22	33.96	42.29	33.00
$C_2 mimNTf_2$	26.33	64.87	38.87	49.79	45.75
$C_3 mimNTf_2$	29.76	75.86	47.73	61.26	50.62
$C_4 mimNTf_2$	43.58	120.30	59.07	76.49	57.81
$C_5 mimNTf_2$	50.77	117.19	72.70	93.82	70.61
C ₆ mimNTf ₂	72.46	208.59	88.33	114.41	81.11
$C_7 mimNTf_2$	82.61	313.29	105.48	136.98	93.05
$C_8 mimNTf_2$	121.35	326.30	125.63	162.54	106.41
$C_9 mimNTf_2$	157.80	464.09	147.39	192.12	120.18
C_{10} mimNTf ₂	207.49	589.22	172.89	222.85	-
C ₁₁ mimNTf ₂	236.29	588.21	199.42	203.99	154.33
C_{12} mimNTf ₂	310.15	783.61	229.97	297.61	-

^{a)} M. Tariq, P. J. Carvalho, J. A. P. Coutinho, I. M. Marrucho, J. N. Canongia Lopes and

L. P. N. Rebelo, Fluid Phase Equilibr., 2011, 301, 22–32.