Supplementary information

High capacity MnFe$_2$O$_4$/rGO composite for Li and Na-ion battery applications

Pratap Kollu *a, Ramesh Kumar Petla b, Chella Santosh c, Do Kyung Kim *b and Andrews Nirmala Grace*$c

a Thin Film Magnetism group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
b Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305–701, Republic of Korea
c Centre for Nanotechnology Research, VIT University, Vellore- 632014, Indi

Figure S1: XRD patterns for the pure MnFe$_2$O$_4$ along with JCPDS data.
Figure S2: TGA/DSC plots for the MnFe$_2$O$_4$/rGO composite in air atmosphere.
Figure S3: Cyclic voltammetry plots for the pure MnFe$_2$O$_4$ vs. Li/Li$^+$.
Figure S4: a) cycleability and b) charge–discharge curves for the pure MnFe$_2$O$_4$ vs Li/Li$^+$
Figure S5: XRD patterns for the MnFe$_2$O$_4$/rGO electrodes versus Na/Na$^+$ at a) 1st discharge and b) 1st charge states along with existence compound JCPDS data.