3D hierarchical Co$_3$O$_4$ microspheres with enhanced lithium-ion battery performance

Zichao Zhang, a Li Li, *a,b Qi Xu, a and Bingqiang Cao *a

a Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China. E-mail address: mse_lil@ujn.edu.cn (Li); mse_caobq@ujn.edu.cn (Cao)
b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

Fig. S1 SEM images of Co$_3$O$_4$ (a) nanoparticles, (b) nanorods.

Fig. S2 XRD diffraction pattern of as-prepared precursor CP-C (JCPDS card no. 048-0083).

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015
Fig. S3 TG curve of as-prepared CP-C

Fig. S4 TEM images of (a) Co$_3$O$_4$-A and (b) Co$_3$O$_4$-C.

Fig. S5 Coulombic efficiencies of (a) Co$_3$O$_4$-A, (b) Co$_3$O$_4$-B and (c) Co$_3$O$_4$-C electrodes at 200 mA g$^{-1}$; (d) Co$_3$O$_4$-C electrode at 500 mA g$^{-1}$.
Fig. S6 The discharge-charge profiles of the Co_3O_4-C at different current densities.

Fig. S7 SEM images of the 3D Co_3O_4 hierarchical microspheres tested as lithium-ion battery anode materials after 50 cycles.