First investigation of polyoxoniobate and polyoxotantalate aqueous speciation by capillary zone electrophoresis

Gauthier J-P. Deblonde,*a,b Nathalie Delaunay,c,d Dahye Lee,c Alexandre Chagnes,a Gérard Cotea and Pierre Gareilc,e

Affiliations:

a PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France. E-mail: gauthier.deblonde@chimie-paris.org
b Eramet Research, Hydrometallurgy department, F-78193 Trappes, France
c PSL Research University, ESPCI ParisTech, Laboratory of Analytical and Bioanalytical Sciences and Miniaturization, UMR CBI 8231, 10 rue Vauquelin, 75231 Paris cedex 05, France
d CNRS, UMR CBI 8231, 75005, Paris, France
e PSL Research University, Chimie ParisTech, 75005, Paris, France

Figure S1. Effective mobility measured for H₆Ta₆O₁₉⁽⁻⁸⁾ (purple circles) and H₆Nb₆O₁₉⁽⁻⁸⁾ (orange squares) as a function of pH in Na⁺ media ([Na⁺] = 50 mM), I = 50 mM. T = 25 °C. [M₆O₁₉]₀ = 0.25 mM. CE conditions: see Figure 3 and Figure 4. The error bars correspond to standard deviation obtained from triplicate injection of the same sample.
Figure S2. Effective mobility measured for $\text{H}_x\text{Ta}_6\text{O}_{19}^{8-x\text{aq}}$ (purple circles) and $\text{H}_x\text{Nb}_6\text{O}_{19}^{8-x\text{aq}}$ (orange squares) as a function of pH in: (a) Li$^+$ media with $[\text{Li}] = 50$ mM and (b) K$^+$ media with $[\text{K}] = 50$ mM. $I = 50$ mM. $T = 25$ °C. $[\text{M}_6\text{O}_{19}]_{\text{tot}} = 0.25$ mM. CE conditions: same as on Figure 4. The error bars correspond to standard deviation obtained from triplicate injection of the same sample.
Figure S3. Effective mobility of $\text{H}_x\text{Nb}_6\text{O}_{19}^{x-8}$ divided by the effective mobility of $\text{H}_x\text{Ta}_6\text{O}_{19}^{x-8}$ as a function of pH. (green circles) Li^+ media with $[\text{Li}] = 50$ mM, (orange squares) Na^+ media with $[\text{Na}] = 50$ mM and (purple triangle) K^+ media with $[\text{K}] = 50$ mM. $I = 50$ mM. $T = 25^\circ \text{C}$. $[\text{M}_6\text{O}_{19}]_{\text{total}} = 0.25$ mM. CE conditions: see Figure 4.