Electronic Supplementary Information

Ethynediamine-functionalized Magnetic Fe₃O₄@SiO₂ Nanoparticles: cooperative trifunctional catalysis for selective synthesis of nitroalkenes

Fengjun Xue,ᵃᵇ Yahao Dong,ᵃᵇ Peibo Hu,ᵃᵇ Yanan Dengᵃᵇ and Yuping Weiᵃᵇ

ᵃDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R.China
ᵇCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R.China

*Corresponding Author. Tel and Fax: +86 22 27403475; E-mail: ypwei@tju.edu.cn

Table of contents

Table Page
List of Products S2-S3
References S4
Copies of ′H NMR Spectra of all compounds S5-S9
List of Products

1. 1H NMR spectra data of the products.

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.98$ (d, $J = 13.6$ Hz, 1H), 7.53 (dd, $J = 11.1$, 6.6 Hz, 3H), 6.98 (d, $J = 8.7$ Hz, 2H), 3.89 (s, 3H).

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.01$ (d, $J = 13.6$ Hz, 1H), 7.60 (d, $J = 13.6$ Hz, 1H), 7.47 (d, $J = 8.0$ Hz, 2H), 7.29 (d, $J = 7.8$ Hz, 2H), 2.44 (s, 3H).

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.01$ (d, $J = 13.6$ Hz, 1H), 7.55 (dd, $J = 13.6$ Hz, 1H), 7.50 (d, $J = 8.5$ Hz, 2H), 6.94 (d, $J = 8.5$ Hz, 2H), 4.84 - 4.70 (m, 1H).

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.04$ (d, $J = 13.7$ Hz, 1H), 7.62 (d, $J = 13.7$ Hz, 1H), 7.60 - 7.45 (m, 5H).

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.45$ (s, 1H), 8.38 (d, $J = 8.2$ Hz, 1H), 8.08 (d, $J = 13.7$ Hz, 1H), 7.90 (d, $J = 7.7$ Hz, 1H), 7.75 - 7.66 (m, 2H).
Light yellowish solid; 1H NMR (400 MHz, CDCl$_3$) δ = 7.99 (d, $J = 13.7$ Hz, 1H), 7.60 (d, $J = 13.7$ Hz, 1H), 7.52 (d, $J = 8.5$ Hz, 2H), 7.46 (d, $J = 8.5$ Hz, 2H).²

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ = 8.16 – 7.87 (m, 1H), 7.70 – 7.49 (m, 1H), 7.33 – 7.15 (m, 1H), 7.13 – 6.75 (m, 2H), 3.97 (s, 6H).⁴

Orange yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ = 7.96 (d, $J = 13.5$ Hz, 1H), 7.51 (d, $J = 13.5$ Hz, 1H), 7.12 (d, $J = 7.7$ Hz, 1H), 7.04 (s, 1H), 6.91 (d, $J = 7.9$ Hz, 1H), 6.10 (s, 2H).⁴

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, $J = 13.2$ Hz, 1H), 7.64 – 7.51 (m, 2H), 6.92 (d, $J = 3.4$ Hz, 1H), 6.61 (dd, $J = 3.3$, 1.7 Hz, 1H).

Yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ = 8.85 (d, $J = 13.4$ Hz, 1H), 8.14 (t, $J = 7.9$ Hz, 1H), 8.02 (t, $J = 6.6$ Hz, 1H), 7.95 (d, $J = 7.8$ Hz, 1H), 7.76 (t, $J = 6.5$ Hz, 1H), 7.70 – 7.59 (m, 3H), 7.54 (t, $J = 7.7$ Hz, 1H).⁴
References

Fig. S1 1H NMR spectra of 3a in CDCl$_3$

Fig. S2 1H NMR spectra of 3b in CDCl$_3$
Fig. S3 1H NMR spectra of 3c in CDCl$_3$

Fig. S4 1H NMR spectra of 3d in CDCl$_3$
Fig. S5 1H NMR spectra of 3e in CDCl$_3$

Fig. S6 1H NMR spectra of 3f in CDCl$_3$
Fig. S7 1H NMR spectra of 3g in CDCl$_3$

Fig. S8 1H NMR spectra of 3h in CDCl$_3$
Fig. S9 1H NMR spectra of 3i in CDCl$_3$

Fig. S10 1H NMR spectra of 3j in CDCl$_3$