Supplementary data

In Situ Construction of SnO$_2$/g-C$_3$N$_4$ heterojunction for Enhanced Visible-Light Photocatalytic Activity

Xi Chena, Banchong Zhoua, Shuanglei Yanga, Hanshuo Wua, Yuxing Wua, Laidi Wua, Jun Pana.*, Xiang Xionga.*

aState Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, P. R. China

*To whom correspondence should be addressed: xiongx@csu.edu.cn or jun.pan@csu.edu.cn
Figure S1. Schematic representation of the in situ deposition of SnO$_2$ nanoparticles on the layered g-C_3N$_4$ sheet.
Figure S1. TG analyses for pure g-C$_3$N$_4$, SnO$_2$/g-CN-88.13%, SnO$_2$/g-CN-72.12%, SnO$_2$/g-CN-54.19%, and SnO$_2$/g-CN-24.47%.
Figure S2. RhB adsorption of SnO$_2$/g-CN-72.12% photocatalysts in the dark. Inset shows RhB adsorption and degradation in the dark and light irradiation, respectively.
Figure S3. (a) Degradation rate of RhB under visible-light irradiation (>420 nm) with the presence of pure g-C₃N₄, SnO₂ and SnO₂/g-CN-72.12% nanocomposites. (b) a natural logarithm C₀/C fitting curves of all samples.