Remarkable enhancement of ambient-air electrical conductivity of the perylenediimide π-stacks self-organized in the flexible films of a hydrogen-bonded polymer

Mustafa Supur,*a Ayhan Yurtsever*bc and Ümit Akbeydef

*a Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

b Department of Electrical and Electronics Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

c The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka, 567-0047, Japan

d Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark

e Interdisciplinary Nanoscience Center (iNANO), Aarhus University

Gustav Wieds Vej 14, 8000, Aarhus C, Denmark

f Leibniz Institute für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert Roessle Str. 10, 13125, Berlin, Germany
Fig. S1 Photographic image of the PVA film with 30wt.% TAIPDI.

Fig. S2 Absorption spectra of TAIPDI cast on a glass substrate and in PVA.
Fig. S3 1H NMR spectrum of TAIPDI in DMSO-d_6 at room temperature.

Fig. S4 EPR spectrum of TAIPDI embedded in PVA (30 wt.%) showing signal of the radical anion of TAIPDIs.
Fig. S5 Absorption spectrum of TAIPDI after 5 min. exposure to the hydrazine vapour.

Fig. S6 Absorption spectra of reduced TAIPDI (3.3 wt.%) in PVA and PVP films.
Fig. S7 I-V curves of only PVA and glass.

Fig. S8 I-V curves of TAIPDI in PVP.