Supporting information

A. Parviainen, a R. Wahlström, b U. Liimatainen, a T. Liitiä, b S. Rovio, b K. J. Helminen, a U. Hyväkkö, a A. W. T. King, a, * A. Suurnäkki b and I. Kilpeläinen a

Contents

1. Synthesis and characterisation
 a. 1,5-Diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc]
 b. 3-(Ammoniopropyl)-2-pyrrolidone acetate [APPH][OAc]

2. Spectra
 a. S1. UV-VIS reflectance spectra
 b. S2. K/s spectra
 c. S3. [APPH][OAc] ¹H NMR in d₆-MeOH
 d. S4. [APPH][OAc] ¹³C NMR in d₆-MeOH
 e. S5. [APPH][OAc] COSY in d₆-MeOH
 f. S6. [APPH][OAc] HMBC in d₆-MeOH
 g. S7. [APPH][OAc] HSQC in d₆-MeOH
 h. S8. [APPH][OAc] TOCSY in d₆-MeOH
 i. S9. [DBNH][OAc] ¹H NMR in d₆-MeOH
 j. S10. [DBNH][OAc] ¹³C NMR in d₆-MeOH
 k. S11. [APPH][OAc] ¹H NMR in d₆-DMSO
 l. S12. [APPH][OAc] ¹³C NMR in d₆-DMSO
 m. S13. [APPH][OAc] HMBC in d₆-DMSO
 n. S14. [APPH][OAc] HSQC in d₆-DMSO
 o. S15. [DBNH][OAc] ¹H NMR in d₆-DMSO
 p. S16. [DBNH][OAc] ¹³C NMR in d₆-DMSO
 q. S17. [DBNH][OAc] HMBC in d₆-DMSO
 r. S18. [DBNH][OAc] HSQC in d₆-DMSO
1. Synthesis

1,5-Diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc]

65.38 g (0.526 mol) of freshly distilled DBN was weighed into the reactor. The airspace was then replaced with argon gas followed by slow addition of 31.61 g (0.526 mol) of acetic acid. The temperature of the mildly exothermic reaction was kept below 70°C during the addition and after the last of the acetic acid the reactor was sealed and let to mix for 30 minutes in 100°C. The composition of the formed IL was characterized by NMR in d_6-DMSO and d_4-MeOH.

1H NMR (in ppm, d_4-MeOH, 600 MHz, 27°C): δ 3.70 (t, $J = 7.3$ Hz, 2H), 3.46 (s, $J = 5.9$ Hz, 2H), 3.41 (t, $J = 5.8$ Hz, 2H), 2.89 (t, $J = 8.0$ Hz, 2H), 2.17 (dt, $J = 8.0$, 7.3, 2H), 2.05 (dt, $J = 5.9$, 5.8 Hz, 2H), 1.89 (s, 3H).

13C NMR (in ppm, d_4-MeOH, 151 MHz, 27°C): δ 180.04, 165.88, 54.63, 43.52, 39.29, 31.13, 30.11, 24.39, 19.75

1H NMR (in ppm, d_6-DMSO, 600 MHz, 27°C): δ 3.49 (t, $J = 7.1$ Hz, 2H), 3.39 (t, $J = 6.7$ Hz, 2H), 2.90 (t, $J = 7.3$ Hz, 2H), 2.40 (t, $J = 8.1$ Hz, 2H), 2.08 (dt, $J = 8.1$, 7.1 Hz, 2H), 1.90 (dt, $J = 7.3$, 6.7 Hz, 2H), 1.89 (s, 3H).

13C NMR (in ppm, d_6-DMSO, 151 MHz, 27°C): δ 180.1, 178.40, 48.70, 40.50, 38.10, 21.80, 26.5, 24.20, 18.90

1-(3-Ammoniopropyl)-2-pyrrolidone acetate [APPH][OAc]

DBN was hydrolysed by refluxing in equal volume of distilled water for 18 hours. Water was removed from the mixture by rotary evaporation and the residue was distilled under oil pump vacuum to give 1-(3-aminopropyl)-2-pyrrolidone (APP) in excellent yield. Exactly one equivalent of acetic acid was added with cooling and stirring to the APP to give an oil which slowly solidified to give the title compound as a white crystalline mass. The product was characterized by NMR in d_6-DMSO and d_4-MeOH.

1H NMR (in ppm, d_4-MeOH, 600 MHz, 27°C): δ 3.49 (t, $J = 7.1$ Hz, 2H), 3.39 (t, $J = 6.7$ Hz, 2H), 2.90 (t, $J = 7.3$ Hz, 2H), 2.40 (t, $J = 8.1$ Hz, 2H), 2.08 (dt, $J = 8.1$, 7.1 Hz, 2H), 1.90 (dt, $J = 7.3$, 6.7 Hz, 2H), 1.89 (s, 3H).

13C NMR (in ppm, d_4-MeOH, 151 MHz, 27°C): δ 180.1, 178.40, 48.70, 40.50, 38.10, 21.80, 26.5, 24.20, 18.90

1H NMR (in ppm, d_6-DMSO, 600 MHz, 27°C): δ 5.41 (br, 3H), 3.31 (t, $J = 7.0$ Hz, 2H), 3.20 (t, $J = 7.0$ Hz, 2H), 2.53 (t, $J = 7.0$ Hz, 2H), 2.21 (t, $J = 8.1$, 2H), 1.91 (dt, $J = 8.1$, 7.0, 2H), 1.79 (s, 3H), 1.57 (p, $J = 7.0$ Hz, 2H).

13C NMR (in ppm, d_6-DMSO, 151 MHz, 27°C): δ 174.08, 46.29, 39.12, 37.08, 30.39, 26.95, 23.80, 17.50
2. Spectra

a. S1. UV-VIS reflectance spectra
UV-Vis-reflectance (left) and difference reflectance (right) spectra of the untreated and in [DBNH][OAc] treated pulp samples. In difference reflectance spectra, the formed chromophores compared to the untreated pulp can be seen as positive signals and reacted/removed structures as negative signals.

b. S2. K/s spectra
K/s absorbance (left) and difference absorbance spectra (right) of the untreated and in [DBNH]AcO treated samples.
c. S3. [APPH][OAc] 1H NMR in d_4-MeOH

d. S4. [APPH][OAc] 13C NMR in d_4-MeOH
e. S5. [APPH][OAc] COSY in d_7-MeOH
f. S6. [APPH][OAc] HMBC in d_7-MeOH

![Image of HMBC spectrum]

g. S7. [APPH][OAc] HSQC in d_7-MeOH

![Image of HSQC spectrum]
h. S8. [APPH][OAc] TOCSY in d_6-MeOH
i. \([DBNH][OAc] \text{}^1\text{H NMR in } d_2\text{-MeOH}\)

\[\text{S9. [DBNH][OAc]} \text{}^1\text{H NMR in } d_2\text{-MeOH}\]

j. \([DBNH][OAc] \text{}^{13}\text{C NMR in } d_2\text{-MeOH}\)

\[\text{S10. [DBNH][OAc]} \text{}^{13}\text{C NMR in } d_2\text{-MeOH}\]
k. [APPH][OAc] 1H NMR in d_6-DMSO

l. [APPH][OAc] 13C NMR in d_6-DMSO
m. S13. [APPH][OAc] HMBC in d_6-DMSO

n. S14. [APPH][OAc] HSQC in d_6-DMSO
o. S15. [DBNH][OAc] 1H NMR in d_6-DMSO

p. S16. [DBNH][OAc] 13C NMR in d_6-DMSO

13C NMR (100 MHz; DMSO-d$_6$): δ 173.83, 162.87, 152.16, 49.94, 38.12, 29.43, 28.75, 18.72, 18.57.
q. S17. [DBNH][OAc] HMBC in d_6-DMSO

r. S18. [DBNH][OAc] HSQC in d_6-DMSO