Supporting Information

A highly selective chemosensor for naked-eye sensing of nanomolar Cu(II) in an aqueous medium

Yaaq Qian,a Li Cao,a Chunman Jia, *ab Peter Osei Boamah,c Qiuyun Yang,a Chunling Liu,a Yan Huangd and Qi Zhang*ad

a Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou, Hainan 570228, China. Email: zhangqi@hainu.edu.cn; Tel: +86-0898-66257271
b Key Study Center of the National Ministry of Education for Tropical Resources Utilization, Hainan University, Haikou, Hainan 570228, China
c Department of Ecological Agriculture, Bolgatanga Polytechnic, Bolgatanga, Ghana
d School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

<table>
<thead>
<tr>
<th>Entry</th>
<th>Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. S1-S3</td>
<td>1H NMR, 13C NMR, HRMS data of compound 2</td>
<td>S2</td>
</tr>
<tr>
<td>Fig. S4-S6</td>
<td>1H NMR, 13C NMR, HRMS data of compound L</td>
<td>S3</td>
</tr>
<tr>
<td>Fig. S7</td>
<td>Equilibration time</td>
<td>S5</td>
</tr>
<tr>
<td>Fig. S8</td>
<td>Linear plot of the change in absorbance of the system vs. [Cu$^{2+}$]</td>
<td>S6</td>
</tr>
<tr>
<td>Fig. S9</td>
<td>ESI mass spectrum of L-Cu$^{2+}$ complex</td>
<td>S7</td>
</tr>
<tr>
<td>Fig. S10</td>
<td>Benesi-Hildebrand analysis</td>
<td>S7</td>
</tr>
<tr>
<td>Fig. S11</td>
<td>Titration curves of L-Cu$^{2+}$ complex upon addition of Hg$^{2+}$</td>
<td>S8</td>
</tr>
<tr>
<td>Fig. S12</td>
<td>The response of L-Cu$^{2+}$ with Hg$^{2+}$ from different concentrations</td>
<td>S8</td>
</tr>
<tr>
<td>Fig. S13</td>
<td>The response of L with Cu$^{2+}$ from different copper salts</td>
<td>S9</td>
</tr>
<tr>
<td>Fig. S14</td>
<td>1H NMR titration experiment</td>
<td>S9</td>
</tr>
<tr>
<td>Fig. S15</td>
<td>Reversibility experiment</td>
<td>S10</td>
</tr>
</tbody>
</table>
Fig. S1 1H NMR (400 MHz) spectrum of 2 in (CD$_3$)$_2$SO.
Fig. S2 13C NMR (101 MHz) spectrum of 2 in (CD$_3$)$_2$SO.

Fig. S3 ESI mass spectrum of 2.

Fig. S4 1H NMR (400 MHz) spectrum of L in CDCl$_3$.
Fig. S5 13C NMR (101 MHz) spectrum of L in CDCl$_3$.

Fig. S6 ESI mass spectrum of L.
Fig. S7 Time-dependent absorption intensities change of L (10 μM, in DMSO) and L (10 μM, in DMSO) with CuCl$_2$·2H$_2$O (10 μM, in H$_2$O) in DMSO/H$_2$O (1:1, v/v) solution at room temperature.
Fig. S8 (top) Absorbance of L at 562 nm vs. [Cu$^{2+}$]. (bottom) Linear plot of the change in absorbance of the system vs. [Cu$^{2+}$].
Fig. S9 ESI mass spectrum of L-Cu$^{2+}$ complex.

Fig. S10 Benesi-Hildebrand analysis of L at different Cu$^{2+}$ concentrations. The absorbance was monitored at 562 nm.
Fig. S11 Titration curves of \textbf{L-Cu}^{2+} complex (10 μM, DMSO/H_{2}O = 1:1, v/v) upon addition of HgCl_{2} (0–60 μM, in H_{2}O). Inset shows the color change of the solution before (left) and after (right) the addition of Hg^{2+}.

Fig. S12 Absorption spectra of \textbf{L-Cu}^{2+} complex (10 μM, DMSO/H_{2}O = 1:1, v/v) upon the addition of HgCl_{2} (50 μM, 100 μM, in H_{2}O, respectively).
Fig. S13 Absorption spectra of L (10 μM, in DMSO) recorded after the addition of different copper salts (10 μM, in H₂O, respectively) in DMSO/H₂O (1:1, v/v) solution.

Fig. S14 Partial 1H NMR spectra of L (10 mg) before (a) and after (b) addition of 1 equiv. of CuCl₂·2H₂O in DMSO-d_6.
Fig. S15 Absorption spectra of L (10 μM) and L-Cu$^{2+}$ complex (10 μM) upon the addition of 1.5 equiv. of EDTA-2Na.