Electronic Supplementary Information

Size Dependent Magnetic Hyperthermia of Octahedral Fe$_3$O$_4$ Nanoparticles

Yunbo Lv,a,b Yong Yang,a Jie Fang,a Hanwen Zhang,a Erwin Peng,a Xiaoli Liu,a,c Wen Xiaoa and Jun Dinga

a Department of Materials Science & Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore

b NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore

c Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, 710069, China

† These authors contribute equally.

Email: msedingj@nus.edu.sg

Fig. S1 Projection of octahedral Fe$_3$O$_4$ MNPs along different direction and the definition of particle size.
Fig. S2 (a) TEM image for 16 nm spherical Fe$_3$O$_4$ MNPs with size distribution inserted. (b) SAR values of 16 nm spherical Fe$_3$O$_4$ MNPs and 22 nm octahedral Fe$_3$O$_4$ MNPs. The two kinds of MNPs have the same volume.
Fig. S3 Hysteresis loops of octahedral Fe$_3$O$_4$ MNPs measured in gel suspension.

Fig. S4 Simulated hysteresis loop for 60 nm octahedral Fe$_3$O$_4$ MNP along different directions. The angle values in the figure refer to different angle between external magnetic field and the pole direction of octahedral Fe$_3$O$_4$ MNP.
Fig. S5 Hydrodynamic size of 43 nm CTAB capped octahedral Fe$_3$O$_4$ MNPs.