## Porous silicon nanoparticles as a nanophotocathode for

## photoelectrochemical water splitting

Soundarrajan Chandrasekaran,<sup>a</sup> Steven J. P. McInnes, <sup>a</sup> Thomas J. Macdonald, <sup>b</sup> Thomas Nann\*<sup>b</sup>and Nicolas H. Voelcker\*<sup>a</sup>

<sup>a</sup> Mawson Institute, University of South Australia, Adelaide, South Australia 5001, Australia.

<sup>b</sup> Ian Wark Research Institute, University of South Australia, Mawson Lakes Blvd, Adelaide, SA 5095, Australia.

\*Email: Nico.Voelcker@unisa.edu.au, Thomas.Nann@unisa.edu.au

Supporting Information

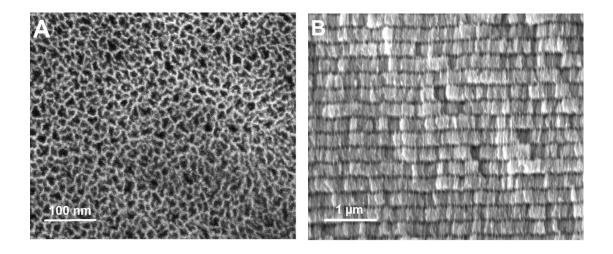
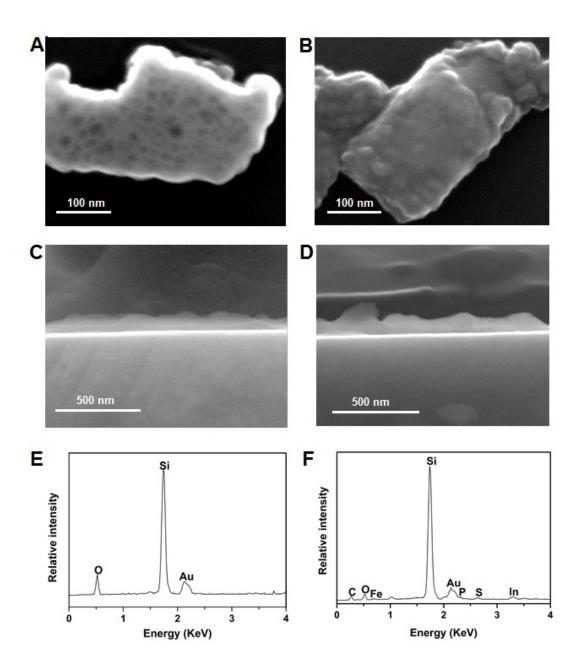
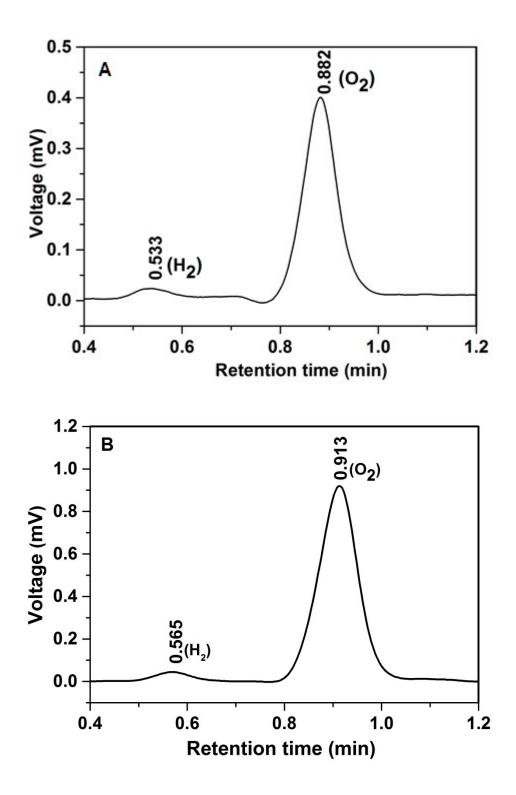





Figure S1. (A) SEM image (Top view) and (B) cross-sectional SEM image showing low and high porosity layers of pSi membrane.



**Figure S2.** (A) and (B) show SEM images (top view) of AM hydrosilylated pSi NPs and AM hydrosilylated pSi NPs + InP NCs + Fe<sub>2</sub>S<sub>2</sub>(CO)<sub>6</sub> catalyst on gold, respectively. (C) and (D) show the cross-sectional SEM images corresponding to (A) and (B), respectively. (E) and (F) show the EDX spectra corresponding to (A) and (B), respectively.



**Figure S3.** (A) GC analysis of the sample gas from the headspace above the hybrid PEC electrode (310  $\mu$ l) and (B) 200 ppm standard H<sub>2</sub> (310  $\mu$ l).

According to **R** (**H**<sub>2</sub>) =  $\frac{I}{nF}$ , a photocurrent of 2.2 µA should produce 41 nmol of H<sub>2</sub> for 1 h.

$$2.2 \times 10^{-6} A$$

$$R (H_2) = \frac{2 \frac{\text{mol } e^-}{\text{mol } H_2} x 96485 \frac{C}{\text{mol } e^-}}{\text{mol } e^-}$$

=  $1.14 \times 10^{-5} \times 10^{-6} \text{ A mol } \text{H}_2 \text{ C}^{-1}$ 

For 1 h of water splitting reaction =  $1.14 \times 10^{-5} \times 10^{-6} \text{ A mol } \text{H}_2 \text{ C}^{-1} \times 3600 \text{ s}$ 

(where Charge (C) = Current (A) x Time (s))

Amount of  $H_2$  evolution for 1 h = 41 nmol.

#### Calculation for moles of H<sub>2</sub> produced from gas chromatography

Area of pure H<sub>2</sub> (310  $\mu$ l, 200 ppm) = 0.00452 mV min

Consider, 99.5% of pure H<sub>2</sub> has 995000 ppm of H<sub>2</sub>.

To convert the area of pure  $H_2$  (310 µl, 200 ppm)

into high pure H<sub>2</sub> =  $\left[\frac{0.00452 \text{ mV min}}{200 \text{ ppm}}\right] \times 995000 \text{ ppm} = 22.487 \text{ mV min.}$ 

Area of high pure  $H_2(310 \ \mu l) = 22.487 \ mV \ min.$ 

Area of sample H<sub>2</sub> (310  $\mu$ l) after 1 h = 0.00294 mV min

From the areas of pure and sample  $H_2$ , the  $H_2$  evolution is calculated based on the formula from Zhang *et al.*<sup>1</sup>

Amount of H<sub>2</sub> evolution =  $\frac{\left[\frac{0.00294 \text{ mV min}}{(22.487 - 0.00294) \text{ mV min}}\right]_{X \text{ 1 ml x}}{mol}$   $\frac{mol}{22.4 \text{ x 1000 ml}}$ 

(where 1 ml is the volume of the headspace.)

# Amount of $H_2$ evolution for 1 h = 5.837 nmol

### Reference

1. K. Zhang, D. Jing, C. Xing and L. Guo, Int. J. Hydrogen Energy, 2007, 32, 4685-4691.