Electronic Supplementary Information for

Hyaluronic acid-mediated one-pot facile synthesis of a sensitive and biocompatible Gd$_2$O$_3$ nanoprobe for MR Imaging in vivo

Haoyu Wang,a Yan-Yan Fu,b Xuejun Zhang,b Chunshui Yua,b and Shao-Kai Sun*b

aDepartment of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China

bSchool of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
Fig. S1. The photographs of HA-Gd$_2$O$_3$ nanoprobe prepared using different concentrations of Gd(NO$_3$)$_3$ (0.02 M, 0.05 M, 0.1 M, 0.2 M, 0.5 M). The precipitation began to arise as the concentration of Gd$^{3+}$ increased to 0.2 M. So the 0.1 M was chosen to be the optimal reaction concentration to meet requirements in the aspects of high Gd content and good colloid stability.

Fig. S2. HRTEM of HA-Gd$_2$O$_3$ nanoprobe
Fig. S3. The XRD of HA-Gd$_2$O$_3$ nanoprobe.

Fig. S4. The XPS patterns of Gd 4d for HA-Gd$_2$O$_3$ nanoprobe.
Fig. S5. The measurements of dynamic light scattering (DLS) of HA-Gd$_2$O$_3$ nanoprobe dispersed in normal saline for 1 day and 30 days.

Fig. S6. The cell uptake of HA-Gd$_2$O$_3$ after treatment with different mass of HA-Gd$_2$O$_3$ nanoprobe (25 μg, 125 μg). The following equations were used to evaluate the internalization of HA-Gd$_2$O$_3$ nanoprobe by cells.

Percentage (%) = Gd content in intracellular fluid/total Gd content x 100%
Fig. S7. Time-dependent biodistribution measurement of Gd levels in various organs of mice after injection of HA-Gd$_2$O$_3$ nanoprobe at a dose of 0.025 mmol Gd/kg.

Fig. S8. Histology analysis of mice treated with and without intravenous injection of HA-Gd$_2$O$_3$ nanoprobe (200 μl, 0.025 mmol Gd /kg) at 1, 7 and 30 days.
Fig. S9. Average signal enhancement of major organs (kidney, adrenal gland, liver, spleen) after intravenous injection of HA-Gd$_2$O$_3$ (200 μl, 8 mg/mL)