Supplementary Information File

Electronic structure and ultrafast charge transfer dynamics of phosphorous doped graphene layers on copper substrate: A combined spectroscopic study

Dunieskys Gonzalez Larrude, a,b Yunier Garcia-Basabe, c,d,* Fernando Lázaro Freire Junior, b,e Maria Luiza M. Rocco c.

a Graphene and Nano-materials Research Center - MackGraphe, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil.

b Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ, Brazil.

c Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.

d Federal University of Latin-American Integration, Foz do Iguaçu, 85866-000, PR, Brazil.

e Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ, Brazil.

*Corresponding author. Tel.: +55-45-3576-2113; Fax: +55-21-3938-7265.

E-mail address: yunier.basabe@unila.edu.br (Y. Garcia-Basabe).

This Supporting Information is composed by one section:

1. Equation for quantification of the phosphorous element in GP/Cu graphene.

2. Supporting Figures (Figure SI1).
Figure Captions

Figure SI1. High resolution P2p XPS spectrum of GP/Cu (right) graphene layer. The two features used in the fitting procedure are also shown.
Equation for quantification of the phosphorous element amount in GP/Cu graphene.

The amount of P in the graphene film is determined from high resolution P 2p show in Figure SI1 and using the following equation.

\[X_i = \frac{100(A_i)}{\sum_{j=1}^{m} A_j} \]

The \(A_i \) represents the peak intensity in this case corresponding to P 2p XPS spectrum.
Figure SI1. High resolution P2p XPS spectrum of GP/Cu (right) graphene layer. The two features used in the fitting procedure are also shown.