Supplementary Information

Study of the Structure-Activity Relationship of Flavonoids
Based on Their Interaction with Human Serum Albumin

Bao Tu, Zhi-Feng Chen, Zhi-Juan Liu, Rong-rong Li, Yu Ouyang, Yan-Jun Hu*

Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China

Corresponding Author:
E–mail: yjhu@263.net (Y.J. Hu);
Tel.: +86–714–6515602; Fax: +86–714–6573832.
Figure S1. Effect of site marker on the HAS-flavonoids systems ($T = 298$ K, $\lambda_{ex} = 295$ nm). a–j: c (site marker) = c (HSA) = 5.0×10^{-6} mol·L$^{-1}$, c (flavonoids)/(10$^{-6}$), from 0.0 to 10.0 mol·L$^{-1}$ at an increment of 1. Figures A$_1$–E$_1$ display the emission spectra of HSA-Warfarin system after addition flavonoids, Figures A$_2$–E$_2$ display the emission spectra of HSA-Ibuprofen system after addition flavonoids, the inserts correspond to the fluorescence intensity with addition of flavonoids.
Figure S2. Modified Stern-Volmer plots of HSA-flavonoids binding competitive experiments. Figures A–E display modified Stern-Volmer plots of baicalein, wogonin, chrysin, quercetin and naringenin system, respectively.
Figure S3. Synchronous fluorescence spectras about HSA–flavonoids. Figures A₁–A₅ display emission spectras in the addition of different flavonoids when $\Delta \lambda = 15$ nm, Figures B₁–B₅ display emission spectras when $\Delta \lambda = 60$ nm.