Supplementary material

First Light-Emitting Electrochemical Cell with [Ag(I)(N^N)(P^P)] type Complex**

Omar Moudam,^a* Athanassios C. Tsipis,^b* Srikanth Kommanaboyina, ^c Peter N. Horton,^d Simon J.

Coles^d

^aSchool of electronic engineering, University of Bangor, Dean St, LL57 1UT, Bangor, UK, E-mail: <u>omoudam@yahoo.co.uk</u>

^bLaboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina,

451 10 Ioannina, Greece, E-mail: attsipis@uoi.gr

^cSchool of Chemistry, University of Bangor, LL57 2UW, Bangor, UK

dEPSRC National Crystallography Service, School of Chemistry, University of Southampton,

Highfield, Southampton, SO17 1BJ, UK

Table of Contents

Complete list of reference 31.	S3				
Figure S1a. Synthesis of [Ag(Bipy)(POP)]BF4 complex.S					
Figure S1b. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 298 K) of [Ag(Bipy)(POP)]BF ₄ S4	4				
Figure S1c. ³¹ P { ¹ H} NMR spectrum (162 MHz, CDCl ₃ , 298 K) of $[Ag(Bipy)(POP)]BF_4$	S5				
Figure S2. Mercury view of the cationic part of two adjacent moieties of [Ag(I)(Bipy)(POP)] ⁺ .	S5				
Table S1. Crystal data and structure refinement.	S 6				
Table S2. Atomic coordinates [× 10 ⁴], equivalent isotropic displacement parameters [Å ² × 10 ³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.	e S7				
Table S3. Bond lengths [Å] and angles [°].	S9				
Table S4. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^* b^* U^{12}]$.	t S15				
Table S5. Hydrogen coordinates [× 10 ⁴] and isotropic displacement parameters [Å ² × 10 ³].	S17				
Table S6. Torsion angles [°].	S18				
Figure S3. The molecular structure of the cationic $[Ag(Bipy)(POP)]^+$ complex in S ₀ (left) and T ₁ (right states along with relevant structural parameters, optimized at the PBE0/TZP(Ag) \cup 6-31G(d,p)(E level in CHCl ₃ solution.)) S21				
Figure S4. Simulated absorption (top) and emission (bottom) spectra (FWHM=50) of the cationic $[Ag(Bipy)(POP)]^+$ complex, calculated in CHCl ₃ solution at the TD-DFT/PBE0/TZP(Ag) \cup 6 31G(d,p)(E) level.	- - S22				
Figure S5. 3-D contour plots of the MOs involved in the most important electronic transitions in the absorption spectrum of the cationic [Ag(Bipy)(POP)] ⁺ complex.	e S23				
Table S7. Cartesian coordinates and energetic results.	S24				

List of authors in Ref. 31

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.

R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;

Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;

Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;

Kitao, O.;Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;

Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.;

Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,

M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,

C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.;

Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.;

Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2010.

Figure S1a. Synthesis of [Ag(Bipy)(POP)]BF₄ complex.

Figure S1b. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of [Ag(Bipy)(POP)]BF₄

Figure S1b. ${}^{31}P$ { ${}^{1}H$ } NMR spectrum (162 MHz, CDCl₃, 298 K) of [Ag(Bipy)(POP)]BF₄

Figure S2. Mercury view of the cationic part of two adjacent moieties of $[Ag(I)(Bipy)(POP)]^+$.

Empirical formula	C ₄₈ H ₃₈ AgBCl ₆ F ₄ N ₂ OP ₂		
Formula weight	1128.12		
Temperature	100(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 9.5560(7) Å	$\alpha = 109.126(6)^{\circ}$	
	b = 13.9607(10) Å	$\beta = 91.419(5)^{\circ}$	
	c = 19.4900(14) Å	$\gamma = 95.515(5)^{\circ}$	
Volume	2440.9(3) Å ³	•	
Ζ	2		
Density (calculated)	1.535 Mg / m ³		
Absorption coefficient	0.861 mm ⁻¹		
<i>F(000)</i>	1136		
Crystal	Block; Colourless		
Crystal size	$0.180 \times 0.150 \times 0.080 \text{ mm}$	1 ³	
θ range for data collection	2.933 - 27.485°		
Index ranges	$-12 \le h \le 12, -18 \le k \le 17$	$7, -25 \le l \le 24$	
Reflections collected	38260		
Independent reflections	11101 $[R_{int} = 0.0740]$		
Completeness to $\theta = 25.242^{\circ}$	99.6 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	1.000 and 0.610		
Refinement method	Full-matrix least-squares of	on F^2	
Data / restraints / parameters	11101 / 0 / 586		
Goodness-of-fit on F^2	1.021		
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0503, wR2 = 0.1334		
<i>R</i> indices (all data)	R1 = 0.0553, wR2 = 0.1388		
Extinction coefficient	n/a		
Largest diff. peak and hole	gest diff. peak and hole $1.927 \text{ and } -0.834 \text{ e } \text{Å}^{-3}$		

Table S1. Crystal data and structure refinement.

Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724*+ detector mounted at the window of an *FR-E*+ *SuperBright* molybdenum rotating anode generator with HF *Varimax* optics (100µm focus). **Cell determination and data collection**: *CrystalClear-SM Expert 3.1 b27* (Rigaku, 2013). **Data reduction, cell refinement and absorption correction**: *CrystalClear-SM Expert 3.1 b27* (Rigaku, 2013). **Data reduction, cell refinement and absorption correction**: *CrystalClear-SM Expert 3.1 b27* (Rigaku, 2012). **Structure solution**: *SUPERFLIP* (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.) **Structure refinement**: *SHELXL-2013* (G Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.). **Graphics**: *ORTEP3 for Windows* (L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565

Atom	x	у	Z	U_{eq}	<i>S.o.f.</i>	
Agl	455(1)	6876(1)	3106(1)	24(1)	1	
C1	3420(3)	5459(2)	3357(2)	24(1)	1	
C2	2939(3)	4689(2)	2711(2)	26(1)	1	
C3	3287(3)	3694(2)	2554(2)	30(1)	1	
C4	4181(3)	3473(2)	3043(2)	33(1)	1	
C5	4708(3)	4232(2)	3683(2)	33(1)	1	
C6	4319(3)	5211(2)	3840(2)	29(1)	1	
C7	1783(3)	5842(2)	1421(1)	24(1)	1	
C8	2636(3)	5295(2)	1711(1)	26(1)	1	
C9	3997(3)	5151(2)	1493(2)	29(1)	1	
C10	4511(3)	5560(2)	981(2)	35(1)	1	
C11	3689(3)	6106(2)	683(2)	34(1)	1	
C12	2334(3)	6244(2)	904(2)	30(1)	1	
C13	3238(3)	7305(2)	4528(2)	27(1)	1	
C14	2235(3)	7060(2)	4968(2)	29(1)	1	
C15	2435(3)	7454(2)	5728(2)	34(1)	1	
C16	3628(3)	8108(3)	6044(2)	38(1)	1	
C17	4616(3)	8370(3)	5607(2)	43(1)	1	
C18	4428(3)	7967(2)	4851(2)	36(1)	1	
C19	4251(3)	7377(2)	3154(2)	26(1)	1	
C20	3943(3)	8238(2)	2992(2)	36(1)	1	
C21	4938(4)	8753(3)	2692(2)	42(1)	1	
C22	6240(3)	8402(2)	2542(2)	37(1)	1	
C23	6563(3)	7550(2)	2704(2)	31(1)	1	
C24	5578(3)	7044(2)	3015(2)	29(1)	1	
C25	-983(3)	4858(2)	1487(1)	25(1)	1	
C26	-639(3)	4062(2)	887(2)	28(1)	1	
C27	-1481(3)	3131(2)	660(2)	33(1)	1	
C28	-2667(3)	2988(2)	1025(2)	34(1)	1	
C29	-3010(3)	3772(2)	1624(2)	36(1)	1	
C30	-2173(3)	4714(2)	1862(2)	30(1)	1	
C31	-672(3)	6811(2)	1271(1)	24(1)	1	
C32	-1682(3)	6372(2)	696(2)	27(1)	1	
C33	-2253(3)	6965(2)	331(2)	33(1)	1	
C34	-1807(3)	8008(2)	535(2)	34(1)	1	
C35	-788(3)	8447(2)	1104(2)	35(1)	1	
C36	-238(3)	7865(2)	1474(2)	31(1)	1	
01	2036(2)	4900(1)	2218(1)	26(1)	1	
P1	2883(1)	6744(1)	3542(1)	23(1)	1	
P2	70(1)	6097(1)	1799(1)	23(1)	1	

Table S2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

-287(3)	9239(2)	3576(2)	27(1)	1	
-911(3)	10108(2)	3944(2)	31(1)	1	
-1711(3)	10100(2)	4525(2)	32(1)	1	
-1870(3)	9222(2)	4715(2)	29(1)	1	
-1222(3)	8372(2)	4318(1)	24(1)	1	
-1394(3)	7399(2)	4483(1)	24(1)	1	
-1748(3)	7387(2)	5170(2)	31(1)	1	
-1900(3)	6458(2)	5298(2)	36(1)	1	
-1717(3)	5575(2)	4736(2)	36(1)	1	
-1343(3)	5656(2)	4073(2)	33(1)	1	
-429(2)	8387(2)	3757(1)	24(1)	1	
-1160(2)	6548(2)	3943(1)	26(1)	1	
2415(3)	770(2)	2906(2)	28(1)	1	
3721(2)	921(1)	2641(1)	34(1)	1	
1507(2)	74(1)	2351(1)	35(1)	1	
1830(2)	1698(1)	3156(1)	36(1)	1	
2546(2)	388(1)	3482(1)	32(1)	1	
3285(3)	78(2)	928(2)	35(1)	1	
4159(1)	1295(1)	1036(1)	51(1)	1	
2167(1)	-351(1)	128(1)	39(1)	1	
4512(1)	-790(1)	904(1)	70(1)	1	
9386(3)	1715(2)	2172(2)	36(1)	1	
7621(1)	1159(1)	1996(1)	47(1)	1	
9491(1)	3038(1)	2639(1)	45(1)	1	
10253(1)	1478(1)	1351(1)	40(1)	1	
	$\begin{array}{r} -287(3) \\ -911(3) \\ -1711(3) \\ -1870(3) \\ -1222(3) \\ -1394(3) \\ -1748(3) \\ -1748(3) \\ -1748(3) \\ -1717(3) \\ -1343(3) \\ -429(2) \\ -1160(2) \\ 2415(3) \\ 3721(2) \\ 1507(2) \\ 1830(2) \\ 2546(2) \\ 3285(3) \\ 4159(1) \\ 2167(1) \\ 4512(1) \\ 9386(3) \\ 7621(1) \\ 9491(1) \\ 10253(1) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccc} -287(3) & 9239(2) & 3576(2) \\ -911(3) & 10108(2) & 3944(2) \\ -1711(3) & 10100(2) & 4525(2) \\ -1870(3) & 9222(2) & 4715(2) \\ -1222(3) & 8372(2) & 4318(1) \\ -1394(3) & 7399(2) & 4483(1) \\ -1748(3) & 7387(2) & 5170(2) \\ -1900(3) & 6458(2) & 5298(2) \\ -1717(3) & 5575(2) & 4736(2) \\ -1343(3) & 5656(2) & 4073(2) \\ -429(2) & 8387(2) & 3757(1) \\ -1160(2) & 6548(2) & 3943(1) \\ 2415(3) & 770(2) & 2906(2) \\ 3721(2) & 921(1) & 2641(1) \\ 1507(2) & 74(1) & 2351(1) \\ 1830(2) & 1698(1) & 3156(1) \\ 2546(2) & 388(1) & 3482(1) \\ 3285(3) & 78(2) & 928(2) \\ 4159(1) & 1295(1) & 1036(1) \\ 2167(1) & -351(1) & 128(1) \\ 4512(1) & -790(1) & 904(1) \\ 9386(3) & 1715(2) & 2172(2) \\ 7621(1) & 1159(1) & 1996(1) \\ 9491(1) & 3038(1) & 2639(1) \\ 10253(1) & 1478(1) & 1351(1) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Ag1–N41	2.328(2)	C19–P1	1.824(3)
Ag1–N42	2.394(2)	C20–C21	1.391(4)
Ag1–P2	2.4227(7)	С20-Н20	0.9500
Ag1–P1	2.4961(7)	C21–C22	1.384(5)
C1–C2	1.393(4)	C21–H21	0.9500
C1–C6	1.405(4)	C22–C23	1.386(4)
C1–P1	1.837(3)	C22–H22	0.9500
C2–C3	1.395(4)	C23–C24	1.391(4)
C2-O1	1.395(3)	С23–Н23	0.9500
C3–C4	1.390(4)	C24–H24	0.9500
С3–Н3	0.9500	C25–C26	1.395(4)
C4–C5	1.390(4)	C25–C30	1.400(4)
C4–H4	0.9500	C25–P2	1.822(3)
С5-С6	1.389(4)	C26–C27	1.392(4)
С5-Н5	0.9500	С26-Н26	0.9500
С6-Н6	0.9500	C27–C28	1.386(4)
С7–С8	1.395(4)	С27–Н27	0.9500
C7–C12	1.397(4)	C28–C29	1.385(5)
С7-Р2	1.830(3)	C28–H28	0.9500
C8–O1	1.390(3)	C29–C30	1.403(4)
C8–C9	1.391(4)	С29–Н29	0.9500
C9–C10	1.380(4)	С30-Н30	0.9500
С9–Н9	0.9500	C31–C32	1.395(4)
C10-C11	1.384(5)	C31–C36	1.410(4)
C10-H10	0.9500	C31–P2	1.823(3)
C11–C12	1.386(4)	C32–C33	1.394(4)
C11-H11	0.9500	С32–Н32	0.9500
С12-Н12	0.9500	C33–C34	1.397(4)
C13–C18	1.387(4)	С33–Н33	0.9500
C13–C14	1.393(4)	C34–C35	1.393(4)
C13–P1	1.830(3)	C34–H34	0.9500
C14–C15	1.401(4)	C35–C36	1.379(4)
C14–H14	0.9500	С35–Н35	0.9500
C15–C16	1.382(5)	С36–Н36	0.9500
С15-Н15	0.9500	C41–N41	1.343(3)
C16–C17	1.388(5)	C41–C42	1.390(4)
C16–H16	0.9500	C41–H41	0.9500
C17–C18	1.395(4)	C42–C43	1.385(4)
C17–H17	0.9500	C42–H42	0.9500
C18-H18	0.9500	C43–C44	1.388(4)
C19–C20	1.393(4)	С43-Н43	0.9500
C19–C24	1.394(4)	C44–C45	1.398(4)
	× /		

 Table S3. Bond lengths [Å] and angles [°].

C44–H44	0.9500	B1-F1	1.386(4)
C45-N41	1.351(3)	B1-F4	1.399(4)
C45-C46	1.489(4)	B1-F3	1.401(4)
C46-N42	1.346(3)	B1-F2	1.404(3)
C46–C47	1.394(4)	C61-Cl63	1.757(3)
C47–C48	1.395(4)	C61-Cl62	1.765(3)
С47-Н47	0.9500	C61-Cl61	1.766(3)
C48–C49	1.384(4)	C61–H61	1.0000
C48–H48	0.9500	C71-C172	1.763(3)
C49-C50	1.387(4)	C71-C171	1.764(3)
С49-Н49	0.9500	C71-C173	1.769(3)
C50-N42	1.346(4)	C71–H71	1.0000
С50-Н50	0.9500		

N41-Ag1-N42	70.84(8)
N41-Ag1-P2	122.86(6)
N42-Ag1-P2	122.93(6)
N41-Ag1-P1	113.52(6)
N42-Ag1-P1	108.23(6)
P2-Ag1-P1	112.17(2)
C2-C1-C6	117.7(2)
C2C1P1	119.7(2)
C6-C1-P1	122.7(2)
C1-C2-C3	121.8(3)
C1C2O1	119.5(2)
C3-C2-O1	118.7(2)
С4-С3-С2	119.2(3)
С4-С3-Н3	120.4
С2-С3-Н3	120.4
C5-C4-C3	120.4(3)
С5-С4-Н4	119.8
С3-С4-Н4	119.8
C6-C5-C4	119.7(3)
С6-С5-Н5	120.1
С4-С5-Н5	120.1
C5-C6-C1	121.3(3)
С5-С6-Н6	119.4
С1-С6-Н6	119.4
C8-C7-C12	118.1(2)
С8-С7-Р2	118.4(2)
C12-C7-P2	123.2(2)
O1-C8-C9	122.8(2)
O1-C8-C7	116.0(2)
С9-С8-С7	121.1(3)
C10-C9-C8	119.3(3)
С10-С9-Н9	120.3
С8-С9-Н9	120.3
C9-C10-C11	120.8(3)
С9-С10-Н10	119.6
C11-C10-H10	119.6
C10-C11-C12	119.4(3)
C10-C11-H11	120.3
C12-C11-H11	120.3
C11-C12-C7	121.1(3)
С11-С12-Н12	119.4
С7-С12-Н12	119.4
C18-C13-C14	119.1(3)
C18-C13-P1	123.5(2)
C14-C13-P1	117.4(2)
C13-C14-C15	120.8(3)

C13-C14-H14	119.6
С15-С14-Н14	119.6
C16-C15-C14	119.6(3)
С16-С15-Н15	120.2
C14-C15-H15	120.2
C15-C16-C17	119.8(3)
C15-C16-H16	120.1
С17-С16-Н16	120.1
C16-C17-C18	120.6(3)
C16-C17-H17	119 7
C18-C17-H17	119.7
C13-C18-C17	120 1(3)
C13-C18-H18	120.0
C17-C18-H18	120.0
$C_{20}-C_{19}-C_{24}$	119.0(3)
C20-C19-P1	117.0(3) 117.7(2)
$C_{24}-C_{19}-P_{1}$	1233(2)
$C_{21} = C_{20} = C_{19}$	120.5(2) 120.6(3)
C21-C20-H20	119.7
C19-C20-H20	119.7
$C_{22} = C_{21} = C_{20}$	119.7
C22-C21-H21	120.1
C20-C21-H21	120.1
$C_{20} C_{21} C_{22} C_{23}$	120.1 120.1(3)
С21-С22-Н22	120.1(5)
C23-C22-H22	120.0
$C_{22} = C_{23} = C_{24}$	120.0 120.1(3)
C22-C23-H23	120.1(5)
C24-C23-H23	120.0
$C_{23}-C_{24}-C_{19}$	120.0 120.4(3)
C23-C24-H24	119.8
C19-C24-H24	119.8
$C_{26}-C_{25}-C_{30}$	119.8(2)
$C_{26} - C_{25} - P_{2}$	121 8(2)
$C_{30}-C_{25}-P_{2}$	1184(2)
C_{27} C_{26} C_{25} C	1201(3)
C27-C26-H26	120.1(5)
C25-C26-H26	120.0
$C_{23} = C_{20} = C_{20}$	120.0 120.4(3)
C28-C27-H27	119.8
С26-С27-Н27	119.8
$C_{20} = C_{28} = C_{27}$	119.0 119.9(3)
C29-C28-H28	120.0
C27-C28-H28	120.0
$C_{28} - C_{29} - C_{30}$	120.0
C28-C29-H29	119 7
C_{L0} C_{L} Π_{L}	11/./

С30-С29-Н29	119.7
С25-С30-С29	119.3(3)
С25-С30-Н30	120.3
С29-С30-Н30	120.3
C32-C31-C36	118.6(3)
C32-C31-P2	123.2(2)
C36-C31-P2	1182(2)
$C_{33}-C_{32}-C_{31}$	120.6(3)
C33-C32-H32	1197
C31-C32-H32	119.7
$C_{32} - C_{33} - C_{34}$	120.1(3)
C32-C33-H33	119.9
C34_C33_H33	119.9
$C_{35} - C_{34} - C_{33}$	119.9 119.4(3)
C35_C34_H34	120.3
$C_{33} C_{34} H_{34}$	120.3
$C_{35} = C_{34} = 1134$	120.3 120.6(3)
$C_{30} - C_{33} - C_{34}$	120.0(3)
$C_{30} - C_{33} - H_{35}$	119.7
$C_{34} = C_{35} = C_{15}$	119.7
$C_{33} - C_{30} - C_{31}$	120.6(3)
C35-C36-H36	119.7
C31-C36-H36	119.7
C8-OI-C2	11/.9(2)
C19-P1-C13	105.00(12)
CI9-PI-CI	103.42(12)
CI3-PI-CI	102.14(12)
CI9–PI–Agl	112.98(9)
CI3–PI–AgI	114.40(9)
CI–PI–Agl	117.39(9)
C25-P2-C31	104.43(12)
C25–P2–C7	104.36(12)
C31-P2-C7	103.74(12)
C25-P2-Ag1	115.55(9)
C31-P2-Ag1	119.41(9)
C7–P2–Ag1	107.78(8)
N41-C41-C42	122.9(3)
N41-C41-H41	118.5
C42-C41-H41	118.5
C43-C42-C41	118.7(3)
C43-C42-H42	120.6
С41-С42-Н42	120.6
C42-C43-C44	118.8(3)
С42-С43-Н43	120.6
С44-С43-Н43	120.6
C43-C44-C45	119.5(3)
С43-С44-Н44	120.3

C45-C44-H44	120.3
N41-C45-C44	121.5(2)
N41-C45-C46	116.7(2)
C44-C45-C46	121.8(2)
N42-C46-C47	122.3(3)
N42-C46-C45	116.7(2)
C47-C46-C45	121.0(2)
C46-C47-C48	119.0(3)
С46-С47-Н47	120.5
С48-С47-Н47	120.5
C49-C48-C47	118.9(3)
C49-C48-H48	120.5
С47-С48-Н48	120.5
C48-C49-C50	118.5(3)
С48-С49-Н49	120.8
С50-С49-Н49	120.8
N42-C50-C49	123.4(3)
N42-C50-H50	118.3
С49-С50-Н50	118.3
C41-N41-C45	118.5(2)
C41-N41-Ag1	124.14(18)
C45-N41-Ag1	117.14(17)
C50-N42-C46	117.8(2)
C50-N42-Ag1	123.51(19)
C46-N42-Ag1	112.89(17)
F1-B1-F4	110.4(2)
F1-B1-F3	109.8(2)
F4-B1-F3	108.9(2)
F1-B1-F2	109.8(2)
F4-B1-F2	109.1(2)
F3-B1-F2	108.8(2)
Cl63-C61-Cl62	110.68(17)
Cl63-C61-Cl61	110.37(18)
Cl62–C61–Cl61	110.03(17)
С163-С61-Н61	108.6
Cl62–C61–H61	108.6
Cl61-C61-H61	108.6
Cl72-C71-Cl71	111.28(17)
C172–C71–C173	110.18(18)
Cl71–C71–Cl73	110.36(17)
Cl72-C71-H71	108.3
Cl71-C71-H71	108.3
Cl73-C71-H71	108.3

Symmetry transformations used to generate equivalent atoms:

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}	
Ag1	24(1)	26(1)	19(1)	4(1)	4(1)	7(1)	
CĨ	22(1)	24(1)	27(1)	8(1)	6(1)	5(1)	
C2	21(1)	27(1)	29(1)	9(1)	5(1)	5(1)	
C3	27(1)	26(1)	36(2)	5(1)	6(1)	4(1)	
C4	30(1)	27(1)	44(2)	12(1)	10(1)	7(1)	
C5	31(1)	34(1)	38(2)	17(1)	5(1)	8(1)	
C6	28(1)	31(1)	29(1)	10(1)	5(1)	6(1)	
C7	23(1)	26(1)	19(1)	1(1)	2(1)	3(1)	
C8	27(1)	24(1)	20(1)	1(1)	2(1)	2(1)	
C9	24(1)	34(1)	27(1)	3(1)	3(1)	7(1)	
C10	23(1)	45(2)	32(2)	7(1)	8(1)	4(1)	
C11	32(2)	43(2)	26(1)	9(1)	8(1)	2(1)	
C12	29(1)	33(1)	24(1)	5(1)	2(1)	3(1)	
C13	27(1)	28(1)	24(1)	5(1)	-1(1)	10(1)	
C14	34(2)	28(1)	26(1)	8(1)	1(1)	6(1)	
C15	45(2)	35(2)	25(1)	11(1)	5(1)	13(1)	
C16	40(2)	47(2)	24(1)	3(1)	0(1)	17(1)	
C17	30(2)	55(2)	32(2)	-3(1)	-6(1)	8(1)	
C18	25(1)	44(2)	31(2)	2(1)	3(1)	7(1)	
C19	27(1)	26(1)	23(1)	3(1)	0(1)	5(1)	
C20	28(1)	35(2)	49(2)	18(1)	7(1)	11(1)	
C21	39(2)	40(2)	58(2)	27(2)	8(2)	12(1)	
C22	35(2)	38(2)	37(2)	13(1)	5(1)	0(1)	
C23	24(1)	34(1)	29(1)	4(1)	4(1)	4(1)	
C24	27(1)	28(1)	29(1)	6(1)	2(1)	6(1)	
C25	23(1)	26(1)	24(1)	8(1)	1(1)	4(1)	
C26	31(1)	29(1)	22(1)	7(1)	5(1)	2(1)	
C27	39(2)	27(1)	28(1)	5(1)	-2(1)	1(1)	
C28	30(1)	30(1)	44(2)	16(1)	-4(1)	-1(1)	
C29	24(1)	35(2)	55(2)	21(1)	8(1)	5(1)	
C30	27(1)	30(1)	36(2)	12(1)	9(1)	10(1)	
C31	24(1)	26(1)	22(1)	6(1)	6(1)	6(1)	
C32	26(1)	29(1)	24(1)	6(1)	6(1)	6(1)	
C33	30(1)	38(2)	29(2)	10(1)	0(1)	5(1)	
C34	37(2)	37(2)	34(2)	16(1)	5(1)	10(1)	
C35	43(2)	28(1)	33(2)	11(1)	6(1)	6(1)	
C36	34(2)	30(1)	26(1)	6(1)	2(1)	3(1)	
01	22(1)	27(1)	25(1)	5(1)	4(1)	5(1)	
P1	24(1)	23(1)	22(1)	4(1)	2(1)	6(1)	
P2	22(1)	24(1)	19(1)	4(1)	3(1)	5(1)	
C41	27(1)	27(1)	26(1)	7(1)	3(1)	3(1)	
C42	33(1)	24(1)	35(2)	7(1)	3(1)	5(1)	
C43	34(2)	27(1)	31(2)	3(1)	4(1)	10(1)	
C44	26(1)	30(1)	27(1)	4(1)	6(1)	5(1)	

Table S4. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$.

C45	23(1)	25(1)	22(1)	4(1)	2(1)	5(1)
C46	22(1)	27(1)	22(1)	6(1)	5(1)	4(1)
C47	32(1)	32(1)	27(1)	6(1)	10(1)	7(1)
C48	37(2)	42(2)	33(2)	16(1)	10(1)	3(1)
C49	38(2)	31(1)	40(2)	15(1)	6(1)	2(1)
C50	35(2)	28(1)	35(2)	9(1)	6(1)	4(1)
N41	24(1)	24(1)	22(1)	4(1)	3(1)	3(1)
N42	28(1)	24(1)	24(1)	5(1)	5(1)	5(1)
B1	30(2)	29(2)	24(2)	7(1)	2(1)	2(1)
F1	32(1)	35(1)	33(1)	10(1)	7(1)	1(1)
F2	40(1)	35(1)	25(1)	6(1)	-4(1)	-5(1)
F3	41(1)	35(1)	31(1)	7(1)	2(1)	11(1)
F4	35(1)	35(1)	27(1)	12(1)	-1(1)	0(1)
C61	40(2)	37(2)	26(1)	7(1)	5(1)	7(1)
Cl61	47(1)	55(1)	42(1)	12(1)	2(1)	-15(1)
Cl62	50(1)	33(1)	29(1)	5(1)	-1(1)	2(1)
Cl63	89(1)	80(1)	44(1)	12(1)	4(1)	51(1)
C71	36(2)	38(2)	33(2)	10(1)	3(1)	9(1)
Cl71	39(1)	55(1)	49(1)	20(1)	2(1)	1(1)
Cl72	46(1)	40(1)	43(1)	6(1)	3(1)	12(1)
C173	39(1)	48(1)	34(1)	11(1)	5(1)	13(1)

Atom	x	y	Z	U _{ea}	<i>S.o.f.</i>	
					0	
H3	2917	3174	2119	36	1	
H4	4433	2801	2938	39	1	
H5	5331	4081	4011	39	1	
H6	4667	5723	4283	35	1	
H9	4567	4776	1694	35	1	
H10	5441	5465	831	42	1	
H11	4052	6384	331	41	1	
H12	1770	6619	700	36	1	
H14	1406	6621	4750	35	1	
H15	1754	7272	6024	41	1	
H16	3772	8377	6558	46	1	
H17	5428	8828	5826	52	1	
H18	5115	8145	4557	43	1	
H20	3045	8474	3087	43	1	
H21	4724	9346	2591	50	1	
H22	6913	8745	2328	44	1	
H23	7459	7312	2603	37	1	
H24	5809	6467	3133	34	1	
H26	170	4156	633	33	1	
H27	-1241	2591	253	39	1	
H28	-3245	2354	864	41	1	
H29	-3819	3670	1876	43	1	
H30	-2410	5250	2273	36	1	
H32	-1984	5663	552	32	1	
H33	-2947	6660	-57	39	1	
H34	-2195	8414	287	41	1	
H35	-469	9153	1238	41	1	
H36	439	8178	1868	37	1	
H41	265	9248	3179	32	1	
H42	-791	10696	3799	37	1	
H43	-2143	10685	4790	38	1	
H44	-2414	9199	5112	35	1	
H47	-1883	8002	5544	37	1	
H48	-2126	6431	5764	44	1	
H49	-1844	4929	4804	43	1	
H50	-1208	5049	3689	39	1	
H61	2696	133	1354	42	1	
H71	9876	1393	2486	43	1	

Table S5. Hydrogen coordinates [$\times 10^4$] and isotropic displacement parameters [Å² × 10³].

 Table S6. Torsion angles [°].

C6-C1-C2-C3	2.3(4)
P1-C1-C2-C3	-178.2(2)
C6-C1-C2-O1	179.5(2)
P1-C1-C2-O1	-1.1(3)
C1-C2-C3-C4	-2.5(4)
01-C2-C3-C4	-179.7(2)
C2-C3-C4-C5	0.8(4)
C3-C4-C5-C6	1.1(4)
C4-C5-C6-C1	-1.3(4)
C2-C1-C6-C5	-0.4(4)
P1-C1-C6-C5	-179.8(2)
C12-C7-C8-O1	-179.3(2)
P2-C7-C8-O1	6.3(3)
C12-C7-C8-C9	-0.1(4)
P2-C7-C8-C9	-174.4(2)
01-C8-C9-C10	179.3(2)
C7-C8-C9-C10	0.1(4)
C8-C9-C10-C11	-0.1(4)
C9-C10-C11-C12	0.0(4)
C10-C11-C12-C7	0.0(4)
C8-C7-C12-C11	0.0(4)
P2-C7-C12-C11	174.0(2)
C18-C13-C14-C15	-1.5(4)
P1-C13-C14-C15	179.5(2)
C13-C14-C15-C16	1.2(4)
C14-C15-C16-C17	0.1(5)
C15-C16-C17-C18	-1.0(5)
C14-C13-C18-C17	0.6(5)
P1-C13-C18-C17	179.4(2)
C16-C17-C18-C13	0.7(5)
C24-C19-C20-C21	0.4(5)
P1-C19-C20-C21	-179.8(3)
C19-C20-C21-C22	1.0(5)
C20-C21-C22-C23	-1.3(5)
C21-C22-C23-C24	0.3(5)
C22-C23-C24-C19	1.1(4)
C20-C19-C24-C23	-1.5(4)
P1-C19-C24-C23	178.7(2)
C30-C25-C26-C27	0.3(4)
P2-C25-C26-C27	-179.2(2)
C25-C26-C27-C28	0.3(4)
C26-C27-C28-C29	-0.7(5)
C27-C28-C29-C30	0.6(5)
C26-C25-C30-C29	-0.5(4)

P2-C25-C30-C29	179.0(2)
C28-C29-C30-C25	0.0(4)
C36-C31-C32-C33	-0.2(4)
P2-C31-C32-C33	177.4(2)
C31-C32-C33-C34	0.6(4)
C32-C33-C34-C35	0.1(5)
C33-C34-C35-C36	-1.1(5)
C34-C35-C36-C31	1.6(5)
C32-C31-C36-C35	-0.9(4)
P2-C31-C36-C35	-178.6(2)
C9-C8-O1-C2	23.9(3)
C7-C8-O1-C2	-156.8(2)
C1-C2-O1-C8	86.6(3)
C3-C2-O1-C8	-96.2(3)
C20-C19-P1-C13	-93.5(2)
C24-C19-P1-C13	86.3(2)
C20-C19-P1-C1	159.8(2)
C24-C19-P1-C1	-20.4(3)
C20-C19-P1-Ag1	31.8(3)
C24–C19–P1–Ag1	-148.3(2)
C18-C13-P1-C19	-7.3(3)
C14-C13-P1-C19	171.5(2)
C18-C13-P1-C1	100.3(3)
C14-C13-P1-C1	-80.8(2)
C18-C13-P1-Ag1	-131.8(2)
C14-C13-P1-Ag1	47.1(2)
C2-C1-P1-C19	-90.0(2)
C6-C1-P1-C19	89.4(2)
C2-C1-P1-C13	161.1(2)
C6-C1-P1-C13	-19.5(3)
C2-C1-P1-Ag1	35.1(2)
C6-C1-P1-Ag1	-145.46(19)
C26-C25-P2-C31	87.7(2)
C30-C25-P2-C31	-91.8(2)
C26-C25-P2-C7	-20.9(3)
C30-C25-P2-C7	159.6(2)
C26-C25-P2-Ag1	-139.1(2)
C30-C25-P2-Ag1	41.4(2)
C32–C31–P2–C25	-8.1(3)
C36-C31-P2-C25	169.5(2)
C32-C31-P2-C7	101.0(2)
C36-C31-P2-C7	-81.5(2)
C32-C31-P2-Ag1	-139.1(2)
C36-C31-P2-Ag1	38.4(2)
C8-C7-P2-C25	-70.8(2)
C12-C7-P2-C25	115.2(2)

C8-C7-P2-C31	-179.9(2)
C12-C7-P2-C31	6.1(2)
C8-C7-P2-Ag1	52.6(2)
C12-C7-P2-Ag1	-121.5(2)
N41-C41-C42-C43	0.3(4)
C41-C42-C43-C44	-0.6(4)
C42-C43-C44-C45	0.0(4)
C43-C44-C45-N41	0.8(4)
C43-C44-C45-C46	-178.1(3)
N41-C45-C46-N42	-21.0(3)
C44-C45-C46-N42	157.9(3)
N41-C45-C46-C47	157.6(3)
C44-C45-C46-C47	-23.5(4)
N42-C46-C47-C48	-1.6(4)
C45-C46-C47-C48	179.8(3)
C46-C47-C48-C49	-1.0(5)
C47-C48-C49-C50	2.1(5)
C48-C49-C50-N42	-0.6(5)
C42-C41-N41-C45	0.5(4)
C42-C41-N41-Ag1	175.2(2)
C44-C45-N41-C41	-1.1(4)
C46-C45-N41-C41	177.9(2)
C44-C45-N41-Ag1	-176.1(2)
C46-C45-N41-Ag1	2.8(3)
C49-C50-N42-C46	-1.9(4)
C49-C50-N42-Ag1	149.4(2)
C47-C46-N42-C50	3.0(4)
C45-C46-N42-C50	-178.4(2)
C47-C46-N42-Ag1	-151.2(2)
C45-C46-N42-Ag1	27.4(3)

Symmetry transformations used to generate equivalent atoms:

Figure S3. The molecular structure of the cationic $[Ag(Bipy)(POP)]^+$ complex in S₀ (left) and T₁ (right) states along with relevant structural parameters, optimized at the PBE0/TZP(Ag) \cup 6-31G(d,p)(E) level in CHCl₃ solution.

Figure S4. Simulated absorption (top) and emission (bottom) spectra (FWHM=50) of the cationic $[Ag(Bipy)(POP)]^+$ complex, calculated in CHCl₃ solution at the TD-DFT/PBE0/TZP(Ag) \cup 6-31G(d,p)(E) level.

Figure S5. 3-D contour plots of the MOs involved in the most important electronic transitions in the absorption spectrum of the cationic [Ag(Bipy)(POP)]⁺ complex.

[Ag(Bipy)(POP)]⁺ (S₀) (Gas Phase)

Ag	-0.056075000	-0.752582000	-0.371660000
С	-1.977712000	1.414766000	1.736983000
С	-0.769561000	1.657718000	2.408225000
С	-0.742351000	2.018951000	3.750059000
Н	0.217415000	2.178259000	4.231729000
С	-1.938788000	2.162288000	4.446875000
Н	-1.920982000	2.446924000	5.494424000
С	-3.150463000	1.933063000	3.801544000
Н	-4.085667000	2.039216000	4.342386000
С	-3.166943000	1.556434000	2.461397000
Н	-4.114493000	1.356124000	1.969711000
С	1.994890000	2.078676000	0.119514000
С	1.038042000	2.467841000	1.071145000
С	0.761809000	3.808556000	1.312636000
Н	0.012613000	4.085557000	2.046470000
С	1.455186000	4.783364000	0.600818000
Н	1.239552000	5.830814000	0.788937000
С	2.416143000	4.424833000	-0.338548000
Н	2.957225000	5.187727000	-0.888827000
С	2.679407000	3.079140000	-0.575958000
Н	3.418062000	2.796699000	-1.319771000
С	-3.623075000	0.205120000	-0.282917000
С	-3.872023000	-1.104841000	0.149852000
Η	-3.073602000	-1.677044000	0.617325000
С	-5.130627000	-1.672161000	-0.013239000
Η	-5.316913000	-2.684186000	0.334267000
С	-6.147855000	-0.946624000	-0.630956000
Н	-7.128925000	-1.392184000	-0.766150000
С	-5.902257000	0.347425000	-1.080396000
Η	-6.690478000	0.913098000	-1.568441000
С	-4.646592000	0.925555000	-0.905889000
Η	-4.463933000	1.935388000	-1.260522000
С	-1.863436000	2.418164000	-0.966028000
С	-1.141980000	2.424395000	-2.163659000
Η	-0.617758000	1.523811000	-2.474926000
С	-1.079320000	3.575599000	-2.942990000
Η	-0.514748000	3.571991000	-3.870559000
С	-1.731437000	4.732577000	-2.525978000
Η	-1.680149000	5.632931000	-3.131036000
С	-2.443358000	4.738954000	-1.327890000
Η	-2.946784000	5.643274000	-0.998751000
С	-2.508837000	3.588622000	-0.548395000

Η	-3.055754000	3.601900000	0.390676000
С	3.211700000	-0.347691000	1.135697000
С	3.822326000	0.481911000	2.080704000
Η	3.689002000	1.558450000	2.022881000
С	4.605213000	-0.068249000	3.093296000
Н	5.077176000	0.583688000	3.822624000
С	4.790219000	-1.446012000	3.166077000
Н	5.405930000	-1.871199000	3.953198000
С	4.185139000	-2.278604000	2.226251000
Н	4.328409000	-3.354021000	2.277969000
С	3.393523000	-1.733908000	1.221100000
Н	2.916561000	-2.386573000	0.493529000
С	3.299786000	0.238651000	-1.682690000
С	4.688232000	0.379366000	-1.570989000
Н	5.142673000	0.511488000	-0.592956000
С	5.487947000	0.340111000	-2.709060000
Η	6.564574000	0.446922000	-2.615118000
С	4.911269000	0.161229000	-3.964928000
Н	5.539011000	0.128980000	-4.850481000
С	3.531676000	0.014186000	-4.083639000
Н	3.081624000	-0.134915000	-5.060705000
С	2.730782000	0.045910000	-2.946137000
Н	1.654499000	-0.087457000	-3.031829000
0	0.427115000	1.442372000	1.753930000
Р	-1.936803000	0.861535000	-0.013910000
Р	2.186176000	0.296137000	-0.235979000
С	-1.062712000	-2.629636000	-2.859011000
Н	-0.908174000	-1.683770000	-3.370965000
С	-1.616878000	-3.713448000	-3.528123000
Н	-1.897481000	-3.627350000	-4.572071000
С	-1.807011000	-4.891866000	-2.816768000
Н	-2.251013000	-5.761729000	-3.290782000
С	-1.428499000	-4.940070000	-1.481864000
Н	-1.595308000	-5.843517000	-0.907205000
С	-0.859987000	-3.810117000	-0.887102000
С	-0.428793000	-3.808632000	0.536653000
С	-0.264712000	-4.991058000	1.263546000
Н	-0.410356000	-5.957363000	0.795049000
С	0.116704000	-4.920308000	2.597614000
Н	0.249098000	-5.829854000	3.175499000
С	0.333188000	-3.674433000	3.173935000
Н	0.631973000	-3.572001000	4.211356000
С	0.171370000	-2.547478000	2.376487000
Н	0.349566000	-1.551232000	2.771845000
Ν	-0.692566000	-2.669731000	-1.577689000
Ν	-0.198933000	-2.610436000	1.096634000

Sum of electronic and zero-point Energies=	-7836.879848
Sum of electronic and thermal Energies=	-7836.834271
Sum of electronic and thermal Enthalpies=	-7836.833326
Sum of electronic and thermal Free Energies=	-7836.967448

[Ag(Bipy)(POP)]⁺ (T₁) (Gas Phase)

Ag	0.054790000	0.740748000	-0.406040000
C	2.030490000	-1.401524000	1.670619000
С	0.842979000	-1.626590000	2.383888000
С	0.856320000	-1.961155000	3.732896000
Η	-0.088512000	-2.108416000	4.246936000
С	2.073354000	-2.094469000	4.395310000
Η	2.087233000	-2.358875000	5.448222000
С	3.264975000	-1.881077000	3.708597000
Η	4.216209000	-1.979014000	4.222387000
С	3.240970000	-1.531444000	2.361173000
Η	4.173394000	-1.344324000	1.836479000
С	-1.997079000	-2.079170000	0.194845000
С	-1.013357000	-2.454143000	1.124512000
С	-0.740704000	-3.790997000	1.389716000
Η	0.029241000	-4.057038000	2.105928000
С	-1.464460000	-4.776433000	0.724197000
Η	-1.251497000	-5.820968000	0.930680000
С	-2.452211000	-4.431848000	-0.192243000
Η	-3.017118000	-5.202792000	-0.706169000
С	-2.712039000	-3.089867000	-0.453527000
Η	-3.472393000	-2.818605000	-1.179444000
С	3.616481000	-0.247715000	-0.431452000
С	3.868297000	1.092934000	-0.109730000
Η	3.071696000	1.702392000	0.311215000
С	5.125676000	1.644860000	-0.328286000
Η	5.313783000	2.682416000	-0.067999000
С	6.138365000	0.870810000	-0.891485000
Η	7.118073000	1.303638000	-1.070815000
С	5.889812000	-0.455830000	-1.232041000
Η	6.674291000	-1.059276000	-1.679164000
С	4.635701000	-1.016903000	-1.001883000
Η	4.449718000	-2.051434000	-1.274363000
С	1.816722000	-2.457675000	-1.004573000
С	1.080715000	-2.472713000	-2.193369000
Η	0.571956000	-1.567473000	-2.516540000
С	0.985314000	-3.637328000	-2.948908000
Н	0.410104000	-3.640196000	-3.869942000
С	1.618475000	-4.799340000	-2.516661000
Н	1.541495000	-5.710085000	-3.103151000

С	2.344157000	-4.796889000	-1.327022000
Н	2.832726000	-5.704844000	-0.985675000
С	2.442651000	-3.632913000	-0.571362000
Н	2.999994000	-3.639307000	0.361659000
С	-3.143731000	0.381983000	1.203255000
С	-3.735546000	-0.419792000	2.183635000
Н	-3.631025000	-1.500003000	2.135123000
С	-4.462227000	0.162441000	3.220063000
Н	-4.920049000	-0.468369000	3.976504000
С	-4.609458000	1.545270000	3.282347000
Н	-5.181310000	1.995606000	4.088351000
С	-4.023300000	2.350626000	2.307336000
Н	-4.138493000	3.429852000	2.350166000
С	-3.287570000	1.773487000	1.277748000
Н	-2.823499000	2.404268000	0.523231000
С	-3.361432000	-0.273186000	-1.595323000
С	-4.746302000	-0.378220000	-1.419683000
Н	-5.160657000	-0.465349000	-0.419114000
С	-5.593604000	-0.361670000	-2.523446000
H	-6.667179000	-0.440372000	-2.379847000
C	-5.068277000	-0.242212000	-3.808472000
Ĥ	-5.732936000	-0.228103000	-4.667157000
C	-3.692149000	-0.131998000	-3.991082000
H	-3 281661000	-0 030425000	-4 991413000
C	-2.843576000	-0.140191000	-2.888318000
Ĥ	-1 769264000	-0.036799000	-3 025014000
0	-0.372762000	-1.418098000	1.763243000
P	1 934847000	-0 881741000	-0.088624000
Р	-2.186017000	-0.303884000	-0.197379000
C	0 872768000	2 721934000	-2 877270000
Ĥ	0 783041000	1 778813000	-3 413335000
C	1 230136000	3 892531000	-3 598691000
Н	1 413183000	3 836640000	-4 665191000
C	1 326402000	5 102757000	-2.887646000
Н	1 582526000	6 024310000	-3 400315000
C	1 090908000	5 102596000	-1 540442000
H	1 157771000	6 029004000	-0 984804000
C	0 749789000	3 863636000	-0.851194000
C	0.536212000	3 804930000	0.518905000
C	0.618831000	4 977960000	1 386582000
н	0.886229000	5 941681000	0.972675000
C	0 353955000	4 864117000	2,723311000
н	0.410320000	5 734764000	3 368877000
\hat{C}	0.008505000	3 605501000	3 251566000
н	-0 214672000	3 465337000	4 302530000
\hat{C}	-0 030317000	2 494188000	2 361631000
\sim	0.0001/000	2.77T100000	2.501051000

-0.283078000	1.508451000	2.748228000
0.635877000	2.679126000	-1.593510000
0.220574000	2.562774000	1.083528000
zero-point Energies	-7836.7	75347
thermal Energies=	-7836.72	28926
thermal Enthalpies=	-7836.72	27982
thermal Free Energi	es= -7836.	865228
	-0.283078000 0.635877000 0.220574000 zero-point Energies= thermal Energies= thermal Enthalpies= thermal Free Energi	-0.283078000 1.508451000 0.635877000 2.679126000 0.220574000 2.562774000 zero-point Energies= -7836.7 thermal Energies= -7836.7 thermal Enthalpies= -7836.7 thermal Free Energies= -7836.7

[Ag(Bipy)(POP)]⁺ (S₀) (CHCl₃ Solution)

Ag	-0.049458000	-0.775364000	-0.269408000
С	-1.942425000	1.657299000	1.648159000
С	-0.728499000	1.970930000	2.278705000
С	-0.688866000	2.497666000	3.564424000
Η	0.274779000	2.705602000	4.018757000
С	-1.879556000	2.739641000	4.243522000
Н	-1.852041000	3.152613000	5.247145000
С	-3.097571000	2.443203000	3.637922000
Н	-4.028656000	2.625336000	4.165417000
С	-3.125709000	1.901425000	2.355707000
Η	-4.078928000	1.654333000	1.898024000
С	2.056243000	2.081127000	-0.019916000
С	1.101182000	2.595004000	0.872904000
С	0.857924000	3.960832000	0.965542000
Н	0.110595000	4.335352000	1.656699000
С	1.584503000	4.835374000	0.161601000
Н	1.394775000	5.902184000	0.233224000
С	2.544265000	4.353029000	-0.722646000
Н	3.110089000	5.037860000	-1.346045000
С	2.773698000	2.982524000	-0.810788000
Н	3.512148000	2.603297000	-1.510418000
С	-3.610812000	0.200449000	-0.184040000
С	-3.818907000	-1.112661000	0.258525000
Η	-2.985079000	-1.679534000	0.666305000
С	-5.081383000	-1.691530000	0.174829000
Η	-5.233843000	-2.708178000	0.525273000
С	-6.143455000	-0.971924000	-0.369622000
Н	-7.127120000	-1.426299000	-0.443567000
С	-5.940194000	0.328117000	-0.826718000
Η	-6.764294000	0.889028000	-1.257847000
С	-4.680426000	0.915355000	-0.733980000
Η	-4.529763000	1.928385000	-1.095436000
С	-1.875018000	2.295820000	-1.172078000
С	-1.338578000	2.074801000	-2.445667000
Η	-0.936009000	1.095415000	-2.694333000

С	-1.312115000	3.099234000	-3.387090000
Н	-0.894405000	2.917883000	-4.372955000
С	-1.810524000	4.358019000	-3.058633000
Н	-1.783727000	5.160639000	-3.789753000
С	-2.336272000	4.589476000	-1.789180000
Н	-2.720330000	5.571727000	-1.529695000
С	-2.370328000	3.564083000	-0.848006000
Н	-2.776729000	3.752693000	0.141869000
С	3.185384000	-0.239397000	1.291202000
С	3.898939000	0.671168000	2.077073000
Н	3.871961000	1.730720000	1.838519000
С	4.643331000	0.223316000	3.166300000
Η	5.193045000	0.937592000	3.772434000
С	4.685964000	-1.134112000	3.475405000
Н	5.267899000	-1.480414000	4.324532000
С	3.977436000	-2.046929000	2.695941000
Η	4.003920000	-3.105981000	2.935539000
С	3.224917000	-1.601657000	1.613713000
Н	2.661569000	-2.313740000	1.015534000
С	3.341674000	0.026097000	-1.576989000
Ċ	4.732964000	0.121176000	-1.454121000
Η	5.179322000	0.332969000	-0.486508000
С	5.547198000	-0.062413000	-2.568252000
Н	6.625913000	0.009891000	-2.464849000
С	4.981715000	-0.339796000	-3.811695000
Н	5.620254000	-0.484065000	-4.678299000
С	3.598334000	-0.439904000	-3.941050000
Н	3.155166000	-0.663393000	-4.907051000
С	2.782854000	-0.264757000	-2.826641000
Н	1.703327000	-0.357719000	-2.919850000
0	0.460013000	1.662025000	1.649198000
Р	-1.919085000	0.880240000	-0.016203000
Р	2.201457000	0.264225000	-0.167587000
С	-0.843681000	-2.665449000	-2.825007000
Н	-0.629745000	-1.726775000	-3.328563000
С	-1.337012000	-3.752040000	-3.536139000
Η	-1.511180000	-3.673609000	-4.603433000
С	-1.605234000	-4.922519000	-2.836684000
Н	-2.005629000	-5.794212000	-3.344457000
С	-1.360717000	-4.961572000	-1.470393000
Н	-1.587095000	-5.860446000	-0.909823000
С	-0.846717000	-3.829391000	-0.831860000
С	-0.557960000	-3.818417000	0.627610000
С	-0.507350000	-4.994340000	1.381768000
Н	-0.640479000	-5.962655000	0.914516000
С	-0.259449000	-4.915760000	2.746333000
	-	-	

Η	-0.216091000	-5.820415000	3.344577000
С	-0.063107000	-3.668603000	3.328070000
Н	0.129953000	-3.559885000	4.389497000
С	-0.107953000	-2.549552000	2.505305000
Н	0.055303000	-1.553862000	2.908096000
Ν	-0.604650000	-2.695975000	-1.512196000
Ν	-0.345676000	-2.619459000	1.193932000

-7836.919731
-7836.874327
-7836.873383
-7837.005556

$[Ag(Bipy)(POP)]^+ (T_1) (CHCl_3 Solution)$ symmetry C_1

Ag	0.048059000	0.777077000	-0.237483000
Ċ	1.994899000	-1.716233000	1.562370000
С	0.799425000	-2.052390000	2.216208000
С	0.796140000	-2.618868000	3.485570000
Η	-0.154034000	-2.843079000	3.960147000
С	2.005759000	-2.878906000	4.123430000
Η	2.006865000	-3.323165000	5.113985000
С	3.205982000	-2.560348000	3.494004000
Η	4.151661000	-2.756422000	3.989598000
С	3.197713000	-1.978814000	2.228975000
Η	4.137500000	-1.715288000	1.753076000
С	-2.057263000	-2.097652000	0.004249000
С	-1.075966000	-2.636930000	0.852547000
С	-0.836704000	-4.005582000	0.904874000
Η	-0.068146000	-4.399547000	1.561108000
С	-1.595163000	-4.857769000	0.106331000
Η	-1.408806000	-5.926820000	0.146648000
С	-2.582284000	-4.350537000	-0.732731000
Η	-3.173377000	-5.018113000	-1.351427000
С	-2.806615000	-2.977165000	-0.781609000
Η	-3.566480000	-2.577997000	-1.446394000
С	3.608866000	-0.210274000	-0.281005000
С	3.832221000	1.098513000	0.166698000
Η	3.010437000	1.664736000	0.598993000
С	5.093637000	1.675209000	0.054830000
Η	5.257606000	2.688767000	0.409036000
С	6.139272000	0.957628000	-0.522848000
Н	7.121827000	1.410299000	-0.618837000
С	5.920667000	-0.338067000	-0.985451000
Н	6.731658000	-0.897188000	-1.442973000

С	4.662182000	-0.922774000	-0.864902000
Н	4.499300000	-1.931964000	-1.231849000
С	1.830284000	-2.267850000	-1.270585000
С	1.249630000	-2.009812000	-2.517707000
Н	0.840228000	-1.023444000	-2.725062000
С	1.187407000	-3.007263000	-3.486107000
Н	0.735514000	-2.797503000	-4.451072000
С	1.693774000	-4.275768000	-3.211684000
Н	1.638937000	-5.057074000	-3.964012000
С	2.263416000	-4.544132000	-1.968791000
Н	2.653727000	-5.533961000	-1.750828000
С	2.333090000	-3.545847000	-1.000812000
Н	2.773497000	-3.763278000	-0.031567000
С	-3.130210000	0.195674000	1.404948000
С	-3.845524000	-0.726179000	2.176087000
Н	-3.850880000	-1.776503000	1.898312000
С	-4.549500000	-0.301615000	3.300891000
Н	-5.100823000	-1.024548000	3.895195000
С	-4.549656000	1.043987000	3.660770000
Н	-5.100142000	1.372246000	4.537607000
С	-3.839077000	1.967959000	2.896477000
Н	-3.833501000	3.017691000	3.175426000
С	-3.126583000	1.545478000	1.778379000
Н	-2.559351000	2.264407000	1.192275000
С	-3.380015000	-0.003897000	-1.464490000
С	-4.768421000	-0.060170000	-1.295827000
Н	-5.188416000	-0.263165000	-0.314681000
С	-5.613890000	0.150911000	-2.381700000
Н	-6.690171000	0.108851000	-2.242251000
С	-5.082832000	0.416517000	-3.642591000
Н	-5.745544000	0.581837000	-4.487008000
С	-3.702078000	0.477673000	-3.817751000
Н	-3.285078000	0.691489000	-4.797539000
С	-2.855320000	0.276091000	-2.731637000
Н	-1.777207000	0.338814000	-2.860945000
0	-0.404984000	-1.725015000	1.628331000
Р	1.919734000	-0.886983000	-0.075133000
Р	-2.196761000	-0.276733000	-0.096871000
С	0.646562000	2.734067000	-2.793657000
Н	0.501710000	1.789380000	-3.314262000
С	0.939453000	3.899072000	-3.553411000
Н	1.018254000	3.834983000	-4.631951000
С	1.109083000	5.113552000	-2.862456000
Н	1.324919000	6.029396000	-3.402776000
С	0.998174000	5.124687000	-1.499711000
Н	1.128883000	6.052999000	-0.959218000

С	0.713524000	3.891293000	-0.772900000
С	0.625994000	3.843316000	0.611022000
С	0.791414000	5.022983000	1.454985000
Н	0.971670000	5.990582000	1.005271000
С	0.716247000	4.911803000	2.816100000
Н	0.839620000	5.787773000	3.444545000
С	0.474844000	3.649205000	3.390492000
Н	0.407011000	3.508749000	4.462559000
С	0.309595000	2.538956000	2.517656000
Н	0.109789000	1.556215000	2.940487000
Ν	0.530159000	2.701069000	-1.493079000
Ν	0.373401000	2.603885000	1.214554000

Sum of electronic and zero-point Energies=	-7836.815064
Sum of electronic and thermal Energies=	-7836.768957
Sum of electronic and thermal Enthalpies=	-7836.768013
Sum of electronic and thermal Free Energies=	-7836.902181