Electronic supplementary information

for

Lanthanide-induced shift reagents enable structural elucidation of natural products in inseparable complex mixtures - The case of elemenal from *Inula helenium* L. (Asteraceae)

Marija S. Genčić and Niko S. Radulović*

Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
Fig. S1. Second order signal multiplicity of protons from the vinyl group of elemenal at δ_H 5.83 (a) and 4.88-4.95 (b) in the experimental (red colored) and simulated spectra (blue colored).

WinDNMR software was used for this simulation.
Fig S2. Fitting of the calculated (Δ_{cal}) to the observed (ΔEu) lanthanide-induced shift values for elemenal-Eu(fod)$_3$ complex (H-12, H-13a and H-13b protons were excluded due to a significant share of the contact shift) for the position of europium at $r_o = 2.328$ Å, $\alpha_o = 120^\circ$ and $\beta_o = 180^\circ$.
Fig. S3. The most likely conformation of elemenal-Eu(fod)$_3$ complex (in a Cartesian coordinate system) obtained by the lanthanide probe method ($r_o = 2.328$ Å, $\alpha_o = 120^\circ$ and $\beta_o = 180^\circ$). The parameters required for the calculation of Δ_{cal} values according to the McConnell-Robertson equation are illustrated for proton H-13b; r_i is the distance between europium and this nucleus, and θ_i is the angle between the vector corresponding to r_i and the vector r_o representing the Eu–O bond.