Binding of carboxylatopillar[5]arene with alkyl and aryl ammonium salts in aqueous medium

Suvankar Dasgupta,ab*, Aniket Chowdhurya and Partha Sarathi Mukherjeea*

a Department of Inorganic and Physical chemistry, Indian Institute of Science Bangalore

Bangalore-560012, India

Email: psm@ipc.iisc.ernet.in

b Department of Chemistry, National Institute of Technology Patna, Patna-800005, India

E-mail: sdg1985@gmail.com

Table of Contents

1. Characterization of G1 \supset CP5A complex
 1.1 DOSY NMR spectrum..........................S2
 1.2 NOESY NMR spectrum..........................S3
 1.3 Determination of the association constant and stoichiometry........S4

2. Characterization of G2 \supset CP5A complex
 2.1 DOSY NMR spectrum..........................S7
 2.2 NOESY NMR spectrum..........................S8
 2.3 Determination of the association constant and stoichiometry..........S9

3. Characterization of G3 \supset CP5A complex
 3.1 DOSY NMR spectrum..........................S11
 3.2 NOESY NMR spectrum..........................S12
 3.3 Determination of the stoichiometry......................................S13

4. Characterization of G4 \supset CP5A complex
 4.1 Determination of the association constant and stoichiometry..........S14

5. Characterization of G5 \supset CP5A complex
 5.1 DOSY NMR spectrum..........................S16
 5.2 NOESY NMR spectrum..........................S17
 5.3 Determination of the association constant and stoichiometry..........S18

6. Characterization of G6 \supset CP5A complex
 6.1 DOSY NMR spectrum..........................S20
 6.2 Determination of the association constant and stoichiometry..........S21

7. References...S23
1. Characterization of G1 ⊃ CP5A complex

1.1 DOSY NMR spectrum

Figure S1. DOSY spectrum of an equimolar (10 mM) mixture of CP5A and G1 in D$_2$O.
Same diffusion coefficient for both the species indicates them to be constituents of a single complex. Impurity (acetone) is represented by “x”.
1.2 NOESY NMR spectrum

Figure S2. 2D NOESY spectrum of a mixture of CP5A and G1 in D_2O. The concentrations of host and guest are 10 and 15 mM, respectively. NOE correlations were observed between aromatic proton H_1 of CP5A and methylene protons H_a, H_b and H_c of G1. The NOE cross-peaks labelled as “a/1, b/1, c/1” confirm the pseudo[2]rotaxane formation.
1.3 Determination of the association constant and stoichiometry

NMR titration was done to determine the association constant (K_a) for the present host-guest systems since complex formation is in fast exchange on NMR time scale. NMR titrations were done with solutions having fixed and varying concentration of guest (G1-G3) and host CP5A respectively. Using the nonlinear curve-fitting method, the association constant was obtained for 1:1 host-guest combination from the following equation:

$$\Delta \delta = \left(\Delta \delta_\infty / [G]_0 \right) \left(0.5[H] + 0.5([G]_0 + 1/K_a) - (0.5([H] + 2[H] (1/K_a - [G]_0)) + (1/K_a + [G]_0)^2)^{0.5} \right)$$

Eq. 1

Where $\Delta \delta$ is the chemical shift change of H$_{\delta}$ of the guest G at [H], $\Delta \delta_\infty$ is the chemical shift change of H$_{\delta}$ when the guest is completely complexed, [G]$_0$ is the fixed initial concentration of the guest, and [H] is the varying concentrations of the host CP5A.

For 1:2 guest-host combination, the association constant was obtained from the following equation:

$$\Delta \delta = (\Delta \delta_{GH}K_1[H] + \Delta \delta_{GH2}K_1K_2[H]^2)/(1 + K_1[H] + K_1K_2[H]^2)$$

Eq. 2

Where $\Delta \delta$ is the chemical shift change of H$_{\delta}$ of the guest G at [H], $\Delta \delta_{GH}$ is the chemical shift change of H$_{\delta}$ of the guest G when it is completely complexed by the first CP5A, $\Delta \delta_{GH2}$ is the chemical shift change of H$_{\delta}$ of the guest G when it is completely complexed by the second CP5A, and [H] is the varying concentration of the host CP5A.
Figure S3. Partial 1H NMR spectra (400 MHz, D$_2$O) of G1 at a concentration of 3.0 mM upon addition of CP5A (126.8 mM): a) 0 µL, b) 2 µL, c) 2 µL, d) 2 µL, e) 2 µL, f) 4 µL, g) 4 µL, h) 4 µL, i) 4 µL, j) 6 µL.
Figure S4. The chemical shift changes of H$_d$ on G1 upon addition of CP5A. The red solid line was obtained from the non-linear curve-fitting using Eq. 1.

Figure S5. Mole ratio plot for the complexation between G1 and CP5A, indicating a 1:1 stoichiometry.
2. Characterization of $\text{G}_2 \supset \text{CP5A}$ complex

2.1 DOSY NMR spectrum

Figure S6. DOSY spectrum of an equimolar (10 mM) mixture of CP5A and G2 in D$_2$O. Same diffusion coefficient for both the species indicates them to be constituents of a single complex. Impurity (acetone) is represented by “x”.
2.2 NOESY NMR spectrum

Figure S7. 2D NOESY spectrum of an equimolar (10 mM) mixture of CP5A and G2 in D$_2$O. NOE correlations were observed between aromatic proton H$_1$ of CP5A and methylene protons H$_a$, H$_b$ and H$_c$ of G2. The NOE cross-peaks labelled as “a/1, b/1, c/1” confirms the pseudo[2]rotaxane formation. Impurity (acetone) is represented by “x”.
2.3 Determination of the association constant and stoichiometry

Figure S8. Partial 1H NMR spectra (400 MHz, D$_2$O) of G2 at a concentration of 2.9 mM upon addition of CP5A (127.6 mM): a) 0 µL, b) 2 µL, c) 2 µL, d) 2 µL, e) 2 µL, f) 2 µL, g) 2 µL, h) 2 µL, i) 2 µL, j) 2 µL, k) 2 µL, l) 4 µL.
Figure S9. The chemical shift changes of H_a on G2 upon addition of CP5A. The red solid line was obtained from the non-linear curve-fitting using Eq. 1.

Figure S10. Mole ratio plot for the complexation between G2 and CP5A, indicating a 1:1 stoichiometry.
3. Characterization of $\text{G3} \supset \text{CP5A}$ complex

3.1 DOSY NMR spectrum

Figure S11. DOSY spectrum of an equimolar (10 mM) mixture of CP5A and G3 in D_2O. Same diffusion coefficient for both the species indicates them to be constituents of a single complex.
3.2 NOESY NMR spectrum

Figure S12. 2D NOESY spectrum of an equimolar (10 mM) mixture of CP5A and G3 in D$_2$O. NOE correlations were observed between aromatic proton H$_1$ of CP5A and methylene protons H$_d$, H$_e$ and H$_g$ of G3. The NOE cross-peaks labelled as “1/d, 1/e,g” confirms the pseudo[2]rotaxane formation.
3.3 Determination of the stoichiometry

Figure S13. Partial 1H NMR spectra (400 MHz, D$_2$O) of G3 at a concentration of 3.6 mM upon addition of CP5A (120.6 mM): a) 0 µL, b) 5 µL, c) 5 µL, d) 5 µL, e) 5 µL, f) 5 µL, g) 5 µL, h) 5 µL, i) 5 µL, j) 5 µL, k) 5 µL. Protons H_{b-h} can be first seen upfield shifted only when the [CP5A] = 3.5 mM (entry d). Further addition of CP5A (entry e – entry k) hardly affected the chemical shift of H_{b-h} protons of G3, confirming 1:1 stoichiometry for the CP5A \supset G3 complex.

Determination of association constant was not possible as for [CP5A]<[G3], the NMR solutions are turbid and no signal could be obtained even after sonication and heating for long time. Mixed solvents did not improve the case. Titration of G3 into a fixed concentration solution of CP5A was not possible due to poor solubility of G3 (hindering the possibility of making stock solution of G3).
4. Characterization of G4 ⊃ CP5A complex

4.1 Determination of the association constant and stoichiometry

Figure S14. Partial 1H NMR spectra (400 MHz, D$_2$O) of CP5A at a concentration of 3.08 mM upon addition of G4 (97.2 mM): a) 0 µL, b) 3 µL, c) 3 µL, d) 3 µL, e) 3 µL, f) 3 µL, g) 3 µL, h) 3 µL, i) 3 µL, j) 3 µL, k) 3 µL, l) 3 µL.
Figure S15. The chemical shift changes of H₁ on CP5A upon addition of G4. The red solid line was obtained from the non-linear curve-fitting using Eq. 1.

Figure S16. Mole ratio plot for the complexation between G₄ and CP5A, indicating a 1:1 stoichiometry.
5. Characterization of $G_5 \supset CP5A$ complex

5.1 DOSY NMR spectrum

Figure S17. DOSY spectrum of a mixture of CP5A and G5 in D$_2$O. The concentrations of host and guest are 12 and 10 mM, respectively. Same diffusion coefficient for both the species indicates them to be constituents of a single complex.
5.2 NOESY NMR spectrum

Figure S18. 2D NOESY spectrum of a mixture of CP5A and G5 in D$_2$O. The concentrations of host and guest are 11 and 17 mM, respectively. NOE correlations were observed between aromatic proton H$_1$ of CP5A and methylene protons H$_a$, H$_c$ and H$_d$ of G5. The NOE cross-peaks labelled as “1/a, 1/c,d” confirm the pseudo[2]rotaxane formation.
5.3 Determination of the association constant and stoichiometry

Figure S19. Partial 1H NMR spectra (400 MHz, D$_2$O) of G5 at a concentration of 3.2 mM upon addition of CP5A (75.6 mM): a) 0 µL, b) 3 µL, c) 3 µL, d) 3 µL, e) 3 µL, f) 3 µL, g) 3 µL, h) 3 µL, i) 3 µL, j) 3 µL, k) 3 µL, l) 6 µL, m) 6 µL, n) 6 µL, o) 6 µL.
Figure S20. The chemical shift changes of H_d on G5 upon addition of CP5A. The red solid line was obtained from the non-linear curve-fitting using Eq. 1.

Figure S21. Mole ratio plot for the complexation between G5 and CP5A, indicating a 1:1 stoichiometry.
6. Characterization of $\text{G6} \supset \text{CP5A}$ complex

6.1 DOSY NMR spectrum

Figure S22. DOSY spectrum of a mixture of CP5A and G6 in D$_2$O. The concentrations of host and guest are 16 and 7.2 mM, respectively. Same diffusion coefficient for both the species indicates them to be constituents of a single complex.
6.2 Determination of the association constant and stoichiometry

![Chemical Structure](image)

Figure S23. Partial 1H NMR spectra (400 MHz, D$_2$O) of G6 at a concentration of 2.97 mM upon addition of CP5A (51.1 mM): a) 0 µL, b) 5 µL, c) 5 µL, d) 5 µL, e) 5 µL, f) 5 µL, g) 5 µL, h) 5 µL, i) 5 µL, j) 10 µL, k) 10 µL, l) 15 µL, m) 15 µL, n) 15 µL.
Figure S24. The chemical shift changes of H_d on G6 upon addition of CP5A. The red solid line was obtained from the non-linear curve-fitting using Eq. 2.

Figure S25. Mole ratio plot for the complexation between G6 and CP5A, indicating a 1:2 stoichiometry.
7. References:
