Electronic Supplementary Information for:

In Situ Growth of Cobalt Doped ZnO@C/CNT Composites by Pyrolysis of Cobalt Doped MOF for High Performance Lithium Ion Battery

Hongyun Yue*abc, Zhenpu Shi, Qiuxian Wanga, Ting du, Yanmin Dinga, Jun Zhanga, Ningning Huoa and Shuting Yang*abc

a School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
b Engineering Technology Research Center of Motive Power and Key Materials, Xinxiang, Henan 453007, China

c Collaborative Innovation Center of Henan Province for Motive Power and Key Materials, Xinxiang, Henan 453007, China

*Corresponding Author E-mail: yuehongyun@foxmail.com; shutingyang@foxmail.com; Fax: (+86)-373-3326439; Tel: (+86)-373-3326439
Figure S1. TEM image of ZnO@C (a) and CZO@C (b) composites at low magnification.
Figure S2. EDS mapping results of Co and Zn element in the CZO@C/CNT composites.
Figure S3. Enlarged images of the surface of CZO@C (a) and CZO@C/CNT (b).
Figure S4. SEM images of CZO@C (a) and CZO@C/CNT (b) at low magnification.
Figure S5. XPS profiles (Zn 2p core levels) spectra of the as synthesized ZnO@C (a), CZO@C (b) and CZO@C/CNT (c) materials.
Figure S6. Nitrogen adsorption isotherms at 77K for CZO@C/CNT (a) and pore size distribution (b) from BJH calculation based on the desorption branch of the corresponding isotherm.